Your browser doesn't support javascript.
loading
Influences of nickel plated multi-walled carbon-nanotube on the electro-optical properties of nematic liquid crystal.
Guo, Yuqiang; Li, Wenjuan; Li, Xiaoshuai; Zhang, Hui; Ma, Hongmei; Sun, Yubao.
Afiliação
  • Guo Y; School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China. Department of Applied Physics, Hebei University of Technology, Tianjin 300401, People's Republic of China.
Nanotechnology ; 30(47): 475201, 2019 Nov 22.
Article em En | MEDLINE | ID: mdl-31434061
Some enhanced performances can be obtained by doping multi-walled carbon-nanotube (MWCNT) into self-organized nematic liquid crystal (NLC). However, the dispersion of MWCNT in NLC is very few, thus the enhancement is restricted. In this work, a nickel plated MWCNT (MWCNT@Ni) is synthesized to obtain a relatively high dispersion. The morphology, element and chemical bond differences between MWCNT and MWCNT@Ni are characterized. For MWCNT@Ni, there is a layer of coaxial nickel coated on the surface of MWCNT, which weakens the interaction energy between the adjacent MWCNTs and further results in a relatively high dispersion. Moreover, MWCNT@Ni has a more orderly arrangement in NLC compared with MWCNT. The results suggest that the dielectric anisotropy of MWCNT@Ni/NLC with mass fraction of 0.01 wt% is increased by ∼3.6%, and the saturation voltage is reduced by ∼7.3%. Besides, the rise time is decreased by ∼9.5% at 5 V and 1 kHz. These performances have been improved compared with MWCNT/NLC under the same mass fraction. The effect of mass fraction of MWCNT@Ni on rise time is further investigated. As a result, the rise time is decreased by ∼16.7% as MWCNT@Ni with mass fraction of 0.10 wt% is added into NLC. In general, the method to increase dispersion of dopant in NLC is proposed, which can serve as a reference to improve the performances of NLC composites.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2019 Tipo de documento: Article