Your browser doesn't support javascript.
loading
Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges.
Petrenko, Iaroslav; Summers, Adam P; Simon, Paul; Zóltowska-Aksamitowska, Sonia; Motylenko, Mykhailo; Schimpf, Christian; Rafaja, David; Roth, Friedrich; Kummer, Kurt; Brendler, Erica; Pokrovsky, Oleg S; Galli, Roberta; Wysokowski, Marcin; Meissner, Heike; Niederschlag, Elke; Joseph, Yvonne; Molodtsov, Serguei; Ereskovsky, Alexander; Sivkov, Viktor; Nekipelov, Sergey; Petrova, Olga; Volkova, Olena; Bertau, Martin; Kraft, Michael; Rogalev, Andrei; Kopani, Martin; Jesioniowski, Teofil; Ehrlich, Hermann.
Afiliação
  • Petrenko I; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany.
  • Summers AP; Department of Biology, University of Washington, Seattle, WA, USA.
  • Simon P; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Zóltowska-Aksamitowska S; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany.
  • Motylenko M; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland.
  • Schimpf C; Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany.
  • Rafaja D; Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany.
  • Roth F; Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany.
  • Kummer K; Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany.
  • Brendler E; European Synchrotron Radiation Facility (ESRF), Grenoble, France.
  • Pokrovsky OS; Institute of Analytic Chemistry, TU Bergakademie Freiberg, Freiberg, Germany.
  • Galli R; Geosciences Environment Toulouse, University of Toulouse, Toulouse, France.
  • Wysokowski M; BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia.
  • Meissner H; Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, TU Dresden, Dresden, Germany.
  • Niederschlag E; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany.
  • Joseph Y; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland.
  • Molodtsov S; Faculty of Medicine and University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany.
  • Ereskovsky A; Institute for Nonferrous Metallurgy and Purest Materials, TU Bergakademie Freiberg, Freiberg, Germany.
  • Sivkov V; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany.
  • Nekipelov S; Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany.
  • Petrova O; European XFEL GmbH, Schenefeld, Germany.
  • Volkova O; ITMO University, St. Petersburg, Russia.
  • Bertau M; Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, Marseille, France.
  • Kraft M; Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint Petersburg, Russia.
  • Rogalev A; Institute of Physics and Mathematics, Komi Science Center UrD RAS, Syktyvkar, Russia.
  • Kopani M; Institute of Physics and Mathematics, Komi Science Center UrD RAS, Syktyvkar, Russia.
  • Jesioniowski T; Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia.
  • Ehrlich H; Institute of Physics and Mathematics, Komi Science Center UrD RAS, Syktyvkar, Russia.
Sci Adv ; 5(10): eaax2805, 2019 10.
Article em En | MEDLINE | ID: mdl-31620556
Fabrication of biomimetic materials and scaffolds is usually a micro- or even nanoscale process; however, most testing and all manufacturing require larger-scale synthesis of nanoscale features. Here, we propose the utilization of naturally prefabricated three-dimensional (3D) spongin scaffolds that preserve molecular detail across centimeter-scale samples. The fine-scale structure of this collagenous resource is stable at temperatures of up to 1200°C and can produce up to 4 × 10-cm-large 3D microfibrous and nanoporous turbostratic graphite. Our findings highlight the fact that this turbostratic graphite is exceptional at preserving the nanostructural features typical for triple-helix collagen. The resulting carbon sponge resembles the shape and unique microarchitecture of the original spongin scaffold. Copper electroplating of the obtained composite leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol in both freshwater and marine environments.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colágeno / Biomimética Idioma: En Revista: Sci Adv Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colágeno / Biomimética Idioma: En Revista: Sci Adv Ano de publicação: 2019 Tipo de documento: Article