Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Validating interfacial behaviour of surface-active ionic liquids (SAILs) with computational study integrated with biocidal and cytotoxic assessment.

Dani, Unnati; Bahadur, Anita; Kuperkar, Ketan.
Ecotoxicol Environ Saf; 186: 109784, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31634657
Surface-active ionic liquids (SAILs) belonging to the series of N-alkylmethylimidazolium halides [C8mimX] (X = Br, Cl, and BF4) and [CnmimBr] (n = 10, 12, 14, and 16) were employed to understand the influence of hydrophobicity of alkyl chain length and the chaotropicity of counter-ions of SAILs on the micellization, antimicrobial action and cytotoxicity properties. The micellization phenomenon of SAILs in an aqueous environment was examined employing tensiometry and steady-state fluorescence spectrophotometry. The corresponding interfacial parameters viz., critical micelle concentration (CMC), effectiveness (γCMC), surface pressure (ПCMC), maximum surface excess concentration (Гmax), and the minimum area engaged per molecule (Amin) at the air-water interface were evaluated at 303.15 K. These experimental findings were monitored and geometrically optimized theoretically using Gaussian software to highlight the recent advances in this field of theoretical calculations for putative structure. The simulation descriptors correlated the micellization behavior as a function of hydrophobicity which may contribute to obtaining awareness on their ecological behavior and fate. In addition, the biological screening of all the examined SAILs was undertaken with a combined experimental and theoretical (optimized) method against bacteria and fungus. Results revealed that SAILs with the alkyl chain-length greater than C8- act as a fair antimicrobial agent against the selected microbial strain which is attributed to the enhanced degree of SAILs hydrophobicity. The cytotoxicity of these imidazolium-based SAILs was also assessed on the cervical human cell line (HeLa) using the MTT cell viability assay and the data thus obtained were subjected to statistical analysis.
Selo DaSilva