Your browser doesn't support javascript.
loading
Rapid sequencing-based diagnosis of infectious bacterial species from meningitis patients in Zambia.
Nakagawa, So; Inoue, Shigeaki; Kryukov, Kirill; Yamagishi, Junya; Ohno, Ayumu; Hayashida, Kyoko; Nakazwe, Ruth; Kalumbi, Mox; Mwenya, Darlington; Asami, Nana; Sugimoto, Chihiro; Mutengo, Mable M; Imanishi, Tadashi.
Afiliação
  • Nakagawa S; Department of Molecular Life Science Tokai University School of Medicine Isehara Japan.
  • Inoue S; Micro/Nano Technology Center Tokai University Hiratsuka Japan.
  • Kryukov K; Department of Emergency and Critical Care Medicine Tokai University School of Medicine Isehara Japan.
  • Yamagishi J; Department of Disaster and Emergency Medicine Kobe University Graduate School of Medicine Kobe Japan.
  • Ohno A; Department of Molecular Life Science Tokai University School of Medicine Isehara Japan.
  • Hayashida K; Research Center for Zoonosis Control Hokkaido University Sapporo Japan.
  • Nakazwe R; Global Station for Zoonosis Control GI-CoRE Hokkaido University Sapporo Japan.
  • Kalumbi M; Department of Molecular Life Science Tokai University School of Medicine Isehara Japan.
  • Mwenya D; Research Center for Zoonosis Control Hokkaido University Sapporo Japan.
  • Asami N; Department of Pathology and Microbiology University Teaching Hospital Lusaka Zambia.
  • Sugimoto C; Department of Pathology and Microbiology University Teaching Hospital Lusaka Zambia.
  • Mutengo MM; Institute of Basic and Biomedical Sciences Levy Mwanawasa Medical University Lusaka Zambia.
  • Imanishi T; Department of Pathology and Microbiology University Teaching Hospital Lusaka Zambia.
Clin Transl Immunology ; 8(11): e01087, 2019.
Article em En | MEDLINE | ID: mdl-31709051
OBJECTIVES: We have developed a portable system for the rapid determination of bacterial composition for the diagnosis of infectious diseases. Our system comprises of a nanopore technology-based sequencer, MinION, and two laptop computers. To examine the accuracy and time efficiency of our system, we provided a proof-of-concept for the detection of the causative bacteria of 11 meningitis patients in Zambia. METHODS: We extracted DNA from cerebrospinal fluid samples of each patient and amplified the 16S rRNA gene regions. The sequencing library was prepared, and the sequenced reads were simultaneously processed for bacterial composition determination using the minimap2 software and the representative prokaryote genomes. RESULTS: The sequencing results of four of the six culture-positive samples were consistent with those of conventional culture-based methods. The dominant bacterial species in each of these samples were identified from the sequencing data within only 3 min. Although the major bacterial species were also detected from the other two culture-positive samples and five culture-negative samples, their presence could not be confirmed. Moreover, as a whole, although the number of sequencing reads obtained within a short sequencing run was small, there was no change in the major bacterial species over time with prolonged sequencing. In addition, the processing time strongly correlated with the number of sequencing reads used for the analysis. CONCLUSION: Our results suggest that time-effective analysis could be achieved by determining the number of sequencing reads required for the rapid diagnosis of infectious bacterial species depending on the complexity of bacterial species in a sample.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Clin Transl Immunology Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Clin Transl Immunology Ano de publicação: 2019 Tipo de documento: Article