Your browser doesn't support javascript.
loading
Single-Shot Readout Performance of Two Heterojunction-Bipolar-Transistor Amplification Circuits at Millikelvin Temperatures.
Curry, M J; Rudolph, M; England, T D; Mounce, A M; Jock, R M; Bureau-Oxton, C; Harvey-Collard, P; Sharma, P A; Anderson, J M; Campbell, D M; Wendt, J R; Ward, D R; Carr, S M; Lilly, M P; Carroll, M S.
Afiliação
  • Curry MJ; Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, 87131, USA. mjcurry@sandia.gov.
  • Rudolph M; Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico, 87131, USA. mjcurry@sandia.gov.
  • England TD; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA. mjcurry@sandia.gov.
  • Mounce AM; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Jock RM; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Bureau-Oxton C; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Harvey-Collard P; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Sharma PA; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Anderson JM; Département de Physique et Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada.
  • Campbell DM; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Wendt JR; Département de Physique et Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada.
  • Ward DR; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Carr SM; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Lilly MP; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
  • Carroll MS; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, USA.
Sci Rep ; 9(1): 16976, 2019 Nov 18.
Article em En | MEDLINE | ID: mdl-31740683
ABSTRACT
High-fidelity single-shot readout of spin qubits requires distinguishing states much faster than the T1 time of the spin state. One approach to improving readout fidelity and bandwidth (BW) is cryogenic amplification, where the signal from the qubit is amplified before noise sources are introduced and room-temperature amplifiers can operate at lower gain and higher BW. We compare the performance of two cryogenic amplification circuits a current-biased heterojunction bipolar transistor circuit (CB-HBT), and an AC-coupled HBT circuit (AC-HBT). Both circuits are mounted on the mixing-chamber stage of a dilution refrigerator and are connected to silicon metal oxide semiconductor (Si-MOS) quantum dot devices on a printed circuit board (PCB). The power dissipated by the CB-HBT ranges from 0.1 to 1 µW whereas the power of the AC-HBT ranges from 1 to 20 µW. Referred to the input, the noise spectral density is low for both circuits, in the 15 to 30 fA/[Formula see text] range. The charge sensitivity for the CB-HBT and AC-HBT is 330 µe/[Formula see text] and 400 µe/[Formula see text], respectively. For the single-shot readout performed, less than 10 µs is required for both circuits to achieve bit error rates below 10-3, which is a putative threshold for quantum error correction.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article