Your browser doesn't support javascript.
loading
A General Workflow for Characterization of Nernstian Dyes and Their Effects on Bacterial Physiology.
Mancini, Leonardo; Terradot, Guillaume; Tian, Tian; Pu, YingYing; Li, Yingxing; Lo, Chien-Jung; Bai, Fan; Pilizota, Teuta.
Afiliação
  • Mancini L; Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.
  • Terradot G; Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.
  • Tian T; Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
  • Pu Y; Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
  • Li Y; Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
  • Lo CJ; Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, Republic of China.
  • Bai F; Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
  • Pilizota T; Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom. Electronic address: teuta.pilizota@ed.ac.uk.
Biophys J ; 118(1): 4-14, 2020 01 07.
Article em En | MEDLINE | ID: mdl-31810660
ABSTRACT
The electrical membrane potential (Vm) is one of the components of the electrochemical potential of protons across the biological membrane (proton motive force), which powers many vital cellular processes. Because Vm also plays a role in signal transduction, measuring it is of great interest. Over the years, a variety of techniques have been developed for the purpose. In bacteria, given their small size, Nernstian membrane voltage probes are arguably the favorite strategy, and their cytoplasmic accumulation depends on Vm according to the Nernst equation. However, a careful calibration of Nernstian probes that takes into account the tradeoffs between the ease with which the signal from the dye is observed and the dyes' interactions with cellular physiology is rarely performed. Here, we use a mathematical model to understand such tradeoffs and apply the results to assess the applicability of the Thioflavin T dye as a Vm sensor in Escherichia coli. We identify the conditions in which the dye turns from a Vm probe into an actuator and, based on the model and experimental results, propose a general workflow for the characterization of Nernstian dye candidates.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Corantes / Escherichia coli / Fenômenos Eletrofisiológicos Idioma: En Revista: Biophys J Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Corantes / Escherichia coli / Fenômenos Eletrofisiológicos Idioma: En Revista: Biophys J Ano de publicação: 2020 Tipo de documento: Article