Your browser doesn't support javascript.
loading
Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1.
Qureshi, A W; Altamimy, R; El Habhab, A; El Itawi, H; Farooq, M A; Zobairi, F; Hasan, H; Amoura, L; Kassem, M; Auger, C; Schini-Kerth, V; Toti, F.
Afiliação
  • Qureshi AW; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Altamimy R; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • El Habhab A; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
  • El Itawi H; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Farooq MA; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Zobairi F; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
  • Hasan H; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Amoura L; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Kassem M; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Auger C; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Schini-Kerth V; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
  • Toti F; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France. Electronic address: toti@unistra.fr.
Biochem Pharmacol ; 173: 113734, 2020 03.
Article em En | MEDLINE | ID: mdl-31811867
BACKGROUND: Ageing is associated with progressive endothelial senescence and dysfunction, and cardiovascular risk. Circulating endothelial microvesicles (MVs) are pro-senescent and pro-inflammatory endothelial effectors in acute coronary syndrome. Omega-3 PUFA intake was claimed beneficial in cardiovascular prevention. PURPOSE: To investigate whether the intake of the omega-3 formulation EPA:DHA 6:1 by middle-aged and old rats reduces the shedding of pro-senescent microvesicles from cultured spleen leukocytes (SMVs) and clarify the underlying mechanisms in target coronary primary endothelial cells (ECs). METHODS: Middle-aged male Wistar rats (M, 48-week old) received 500 mg/kg/d of either EPA:DHA 6:1, EPA:DHA 1:1, or vehicle (CTL) for 7 days, old rats (72-week old) for 14 days. Spleen-derived leukocytes were prepared and cultured for 24 h and MVs collected from supernatants (SMVs). Cultured ECs were prepared from freshly isolated porcine coronary arteries. Senescence-associated ß-galactosidase activity (SA-ß-gal) was assessed by C12FDG, protein expression by Western blot analysis, oxidative stress by dihydroethidium using confocal microscopy, and procoagulant MVs by prothrombinase assay. The pro-senescent potential of SMVs from middle-aged rats (M-SMVs) was analyzed by comparison with young (Y, 12-week) and old (O) rats. RESULTS: The shedding of SMVs significantly increased with age and was inhibited by EPA:DHA 6:1 intake that also prevented ROS accumulation in spleen. Incubation of ECs with 10 nM SMVs from middle-aged and old but not those from young rats induced premature senescence after 48 h. The pro-senescent effect of M-SMVs was prevented by Losartan and associated with endothelial oxidative stress. M-SMVs induced an up-regulation of senescence markers (p16, p21, p53), pro-atherothrombotic (VCAM-1, ICAM-1, tissue factor) and pro-inflammatory markers (pNF-κB, COX-2) and proteins of the angiotensin system (ACE, AT1-R). Conversely, endothelial NO synthase was down-regulated. Intake of EPA:DHA 1:1 and 6:1 by middle-aged rats decreased SMV shedding by 14% and 24%, respectively. Only EPA:DHA 6:1 intake abolished the M-SMVs-induced endothelial senescence and reduced the pro-senescent action of O-SMVs by 45%. Protection of ECs was not observed in response to SMVs from EPA:DHA 1:1 treated rats. CONCLUSION: Ingestion of EPA:DHA 6:1 by middle-aged or old rats, respectively abolished or limited both the shedding of SMVs and their pro-senescent, pro-thrombotic and pro-inflammatory effects in ECs, most likely by triggering the local angiotensin system. EPA:DHA 6:1 may help to delay ageing-related endothelial dysfunction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Baço / Envelhecimento / Ácidos Graxos Ômega-3 / Senescência Celular / Células Endoteliais / Micropartículas Derivadas de Células Limite: Animals Idioma: En Revista: Biochem Pharmacol Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Baço / Envelhecimento / Ácidos Graxos Ômega-3 / Senescência Celular / Células Endoteliais / Micropartículas Derivadas de Células Limite: Animals Idioma: En Revista: Biochem Pharmacol Ano de publicação: 2020 Tipo de documento: Article