Your browser doesn't support javascript.
loading
Protective effect of cholecystokinin octapeptide on angiotensin II-induced apoptosis in H9c2 cardiomyoblast cells.
Wang, Can; Yu, Huan; Wei, Limu; Zhang, Jingqi; Hong, Mingyang; Chen, Lin; Dong, Xiaoying; Fu, Lu.
Afiliação
  • Wang C; Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
  • Yu H; Department of Anesthesiology, The Fifth Hospital of Harbin City, Harbin, China.
  • Wei L; Department of Internal Medicine, The First People's Hospital of Nanning, Nanning, China.
  • Zhang J; Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
  • Hong M; Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
  • Chen L; Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
  • Dong X; Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
  • Fu L; Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
J Cell Biochem ; 121(7): 3560-3569, 2020 07.
Article em En | MEDLINE | ID: mdl-31886572
ABSTRACT
Cholecystokinin (CCK) and its receptors are expressed in mammalian cardiomyocytes and are involved in cardiovascular system regulation; however, the exact effect and underlying mechanism of CCK in cardiomyocyte apoptosis remain to be elucidated. We examined whether sulfated CCK octapeptide (CCK-8) protects H9c2 cardiomyoblast cells against angiotensin II (Ang II)-induced apoptosis. The H9c2 cardiomyoblasts were subjected to Ang II with or without CCK-8 and the viability and apoptotic rate were detected using a Cell Counting Kit-8 assay, Hoechst 33342 staining, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays, and flow cytometry. In addition, specific antiapoptotic mechanisms of CCK-8 were investigated using specific CCK1 (Devazepide) or CCK2 (L365260) receptor antagonists, or the PI3K inhibitor LY294002. The expression of CCK, CCK1 receptor, CCK2 receptor, Akt, p-Akt, Bad, p-Bad, Bax, Bcl-2, and caspase-3 were detected by Western blot analysis and real-time polymerase chain reaction. We found that CCK and its receptor messenger RNA (mRNA) and protein are expressed in H9c2 cardiomyoblasts. Ang II-induced increased levels of CCK mRNA and protein expression and decreased levels of CCK1 receptor protein and mRNA. Pretreatment of CCK-8 attenuated Ang II-induced cell toxicity and apoptosis. In addition, pretreatment of H9c2 cells with CCK-8 markedly induced expression of p-Akt, p-bad, and Bcl-2 and decreased the expression levels of Bax and caspase-3. The protective effects of CCK-8 were partly abolished by Devazepide or LY294002. Our results suggest that CCK-8 protects H9c2 cardiomyoblasts from Ang II-induced apoptosis partly via activation of the CCK1 receptor and the phosphatidyqinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Angiotensina II / Colecistocinina / Regulação da Expressão Gênica / Apoptose / Miócitos Cardíacos / Miocárdio Limite: Animals Idioma: En Revista: J Cell Biochem Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Angiotensina II / Colecistocinina / Regulação da Expressão Gênica / Apoptose / Miócitos Cardíacos / Miocárdio Limite: Animals Idioma: En Revista: J Cell Biochem Ano de publicação: 2020 Tipo de documento: Article