Your browser doesn't support javascript.
loading
Transparent Flexible Nanoline Field-Effect Transistor Array with High Integration in a Large Area.
Kim, Dong Wook; Min, Sung-Yong; Lee, Yeongjun; Jeong, Unyong.
Afiliação
  • Kim DW; Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyeongbuk 37673 , Republic of Korea.
  • Min SY; Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyeongbuk 37673 , Republic of Korea.
  • Lee Y; Department of Materials Science and Engineering , Seoul National University , 1 Gwanak-gu , 08826 Seoul , Republic of Korea.
  • Jeong U; Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyeongbuk 37673 , Republic of Korea.
ACS Nano ; 14(1): 907-918, 2020 Jan 28.
Article em En | MEDLINE | ID: mdl-31895536
ABSTRACT
Transparent flexible transistor array requests large-area fabrication, high integration, high manufacturing throughput, inexpensive process, uniformity in transistor performance, and reproducibility. This study suggests a facile and reliable approach to meet the requirements. We use the Al-coated polymer nanofiber patterns obtained by electrohydrodynamic (EHD) printing as a photomask. We use the lithography and deposition to produce highly aligned nanolines (NLs) of metals, insulators, and semiconductors on large substrates. With these NLs, we demonstrate a highly integrated NL field-effect transistor (NL-FET) array (105/(4 × 4 in2), 254 pixel-per-inch) made of pentacene and indium zinc oxide semiconductor NLs. In addition, we demonstrate a NL complementary inverter (NL-CI) circuit consisting of pentacene and fullerene NLs. The NL-FET array shows high transparency (∼90%), flexibility (stable at 2.5 mm bending radius), uniformity (∼90%), and high performances (mobility = 0.52 cm2/(V s), on-off ratio = 7.0 × 106). The NL-CI circuit also shows high transparency, flexibility, and typical switching characteristic with a gain of 21. The reliable large-scale fabrication of the various NLs proposed in this study is expected to be applied for manufacturing transparent flexible nanoelectronic devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2020 Tipo de documento: Article