Your browser doesn't support javascript.
loading
High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests.
Dove, Nicholas C; Safford, Hugh D; Bohlman, Gabrielle N; Estes, Becky L; Hart, Stephen C.
Afiliação
  • Dove NC; Environmental Systems Graduate Group, University of California, Merced, California, 95343, USA.
  • Safford HD; Department of Evolution and Ecology, University of California, Davis, California, 95616, USA.
  • Bohlman GN; USDA-Forest Service, Pacific Southwest Region, Vallejo, California, 94592, USA.
  • Estes BL; USDA-Forest Service, 1711 South Main Street, Yreka, California, 96097, USA.
  • Hart SC; USDA-Forest Service, Pacific Southwest Research Station, Redding, California, 96002, USA.
Ecol Appl ; 30(4): e02072, 2020 06.
Article em En | MEDLINE | ID: mdl-31925848
ABSTRACT
During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Incêndios Florestais / Traqueófitas Idioma: En Revista: Ecol Appl Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Incêndios Florestais / Traqueófitas Idioma: En Revista: Ecol Appl Ano de publicação: 2020 Tipo de documento: Article