Your browser doesn't support javascript.
loading
Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
Zhou, Bo; Jin, Wenfei.
Afiliação
  • Zhou B; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
  • Jin W; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China. jinwf@sustech.edu.cn.
Methods Mol Biol ; 2117: 159-167, 2020.
Article em En | MEDLINE | ID: mdl-31960377
Single cell RNA sequencing (scRNA-seq) is a powerful tool to analyze cellular heterogeneity, identify new cell types, and infer developmental trajectories, which has greatly facilitated studies on development, immunity, cancer, neuroscience, and so on. Visualizing of scRNA-Seq data is fundamental and essential because it is critical to biological interpretation. Although principal component analysis (PCA) is used for visualizing scRNA-seq at early studies, t-Distributed Stochastic Neighbor embedding (t-SNE), an unsupervised nonlinear dimensionality reduction technique, is widely used nowadays due to its advantage in visualization of scRNA-seq data. Here, we detailed the process of visualization of single-cell RNA-seq data using t-SNE via Seurat, an R toolkit for single cell genomics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Biologia Computacional / Análise de Célula Única Limite: Humans Idioma: En Revista: Methods Mol Biol Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Biologia Computacional / Análise de Célula Única Limite: Humans Idioma: En Revista: Methods Mol Biol Ano de publicação: 2020 Tipo de documento: Article