Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
Methods Mol Biol
; 2117: 159-167, 2020.
Article
em En
| MEDLINE
| ID: mdl-31960377
Single cell RNA sequencing (scRNA-seq) is a powerful tool to analyze cellular heterogeneity, identify new cell types, and infer developmental trajectories, which has greatly facilitated studies on development, immunity, cancer, neuroscience, and so on. Visualizing of scRNA-Seq data is fundamental and essential because it is critical to biological interpretation. Although principal component analysis (PCA) is used for visualizing scRNA-seq at early studies, t-Distributed Stochastic Neighbor embedding (t-SNE), an unsupervised nonlinear dimensionality reduction technique, is widely used nowadays due to its advantage in visualization of scRNA-seq data. Here, we detailed the process of visualization of single-cell RNA-seq data using t-SNE via Seurat, an R toolkit for single cell genomics.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Análise de Sequência de RNA
/
Biologia Computacional
/
Análise de Célula Única
Limite:
Humans
Idioma:
En
Revista:
Methods Mol Biol
Ano de publicação:
2020
Tipo de documento:
Article