Your browser doesn't support javascript.
loading
Opposite effects of dopamine on the mechanical activity of circular and longitudinal muscle of human colon.
Zizzo, Maria Grazia; Bellanca, Annalisa; Amato, Antonella; Serio, Rosa.
Afiliação
  • Zizzo MG; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
  • Bellanca A; ATeN (Advanced Technologies Network) Center, University of Palermo, Palermo, Italy.
  • Amato A; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
  • Serio R; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
Neurogastroenterol Motil ; 32(6): e13811, 2020 06.
Article em En | MEDLINE | ID: mdl-32012410
ABSTRACT

BACKGROUND:

Because dopamine (DA) has gained increasing evidence as modulator of gut motility, we aimed to characterize dopaminergic response in human colon, evaluating function and distribution of dopamine receptors in circular vs longitudinal muscle strips.

METHODS:

Mechanical responses to DA and dopaminergic agonists on slow phasic contractions and on basal tone were examined in vitro as changes in isometric tension. RT-PCR was used to reveal the distribution of dopaminergic receptors. KEY

RESULTS:

In spontaneous active circular muscle, DA induced an increase in the amplitude of slow phasic contractions and of the basal tone, via activation of D1-like receptors. DA contractile responses were insensitive to neural blockers or to atropine and inhibited by phospholipase C (PLC) pathway inhibitors. In precontracted circular muscle strips, DA, at the higher concentrations tested, caused a relaxant response via activation of D2-like receptors. In the longitudinal muscle, DA caused only muscular relaxation due to activation of D2-like receptors. DA relaxant responses were insensitive to neural blockers or to nitric oxide synthase inhibitor and reduced by a wide-spectrum K+ channel blockers. Transcripts encoding for all the dopaminergic receptor subtypes was observed in both circular and longitudinal preparations. CONCLUSIONS AND INFERENCES Dopamine is able to modulate contractile activity of the human colon. In the circular muscle layer, DA induces mainly muscular contraction activating non-neural D1-like receptors, coupled to PLC/IP3 pathway. In the longitudinal muscle layer, DA induces muscular relaxation acting on non-neural D2-like receptors leading to the increase in K+ conductance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dopamina / Colo / Contração Muscular / Músculo Liso Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Neurogastroenterol Motil Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dopamina / Colo / Contração Muscular / Músculo Liso Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Neurogastroenterol Motil Ano de publicação: 2020 Tipo de documento: Article