Your browser doesn't support javascript.
loading
A combined experimental and modelling approach for the Weimberg pathway optimisation.
Shen, Lu; Kohlhaas, Martha; Enoki, Junichi; Meier, Roland; Schönenberger, Bernhard; Wohlgemuth, Roland; Kourist, Robert; Niemeyer, Felix; van Niekerk, David; Bräsen, Christopher; Niemeyer, Jochen; Snoep, Jacky; Siebers, Bettina.
Afiliação
  • Shen L; Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany.
  • Kohlhaas M; Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45117, Essen, Germany.
  • Enoki J; Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany.
  • Meier R; Member of Merck Group, Sigma-Aldrich, Industriestrasse 25, Buchs, 9471, Switzerland.
  • Schönenberger B; Member of Merck Group, Sigma-Aldrich, Industriestrasse 25, Buchs, 9471, Switzerland.
  • Wohlgemuth R; Member of Merck Group, Sigma-Aldrich, Industriestrasse 25, Buchs, 9471, Switzerland.
  • Kourist R; Institute of Molecular and Industrial Biotechnology, Technical University Lodz, Stefanowskiego Street 4/10, Lodz, 90-924, Poland.
  • Niemeyer F; Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany.
  • van Niekerk D; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria.
  • Bräsen C; Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45117, Essen, Germany.
  • Niemeyer J; Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
  • Snoep J; Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany.
  • Siebers B; Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45117, Essen, Germany. jochen.niemeyer@uni-due.de.
Nat Commun ; 11(1): 1098, 2020 02 27.
Article em En | MEDLINE | ID: mdl-32107375
The oxidative Weimberg pathway for the five-step pentose degradation to α-ketoglutarate is a key route for sustainable bioconversion of lignocellulosic biomass to added-value products and biofuels. The oxidative pathway from Caulobacter crescentus has been employed in in-vivo metabolic engineering with intact cells and in in-vitro enzyme cascades. The performance of such engineering approaches is often hampered by systems complexity, caused by non-linear kinetics and allosteric regulatory mechanisms. Here we report an iterative approach to construct and validate a quantitative model for the Weimberg pathway. Two sensitive points in pathway performance have been identified as follows: (1) product inhibition of the dehydrogenases (particularly in the absence of an efficient NAD+ recycling mechanism) and (2) balancing the activities of the dehydratases. The resulting model is utilized to design enzyme cascades for optimized conversion and to analyse pathway performance in C. cresensus cell-free extracts.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Caulobacter crescentus / Reatores Biológicos / Engenharia Metabólica / Modelos Químicos Idioma: En Revista: Nat Commun Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Caulobacter crescentus / Reatores Biológicos / Engenharia Metabólica / Modelos Químicos Idioma: En Revista: Nat Commun Ano de publicação: 2020 Tipo de documento: Article