Monte Carlo Aggregation Code (MCAC) Part 1: Fundamentals.
J Colloid Interface Sci
; 569: 184-194, 2020 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-32109672
The application of Monte Carlo methods to simulate the agglomeration of suspended nanoparticles is currently limited to specific agglomeration regimes with reduced accuracy in terms of the particle's physical residence time. The definition of specific particles persistent distance, its corresponding time step and subsequent probabilities for particle displacements may improve the accuracy of this method. To solve these issues, a new persistent distance and its corresponding time step based on Langevin dynamics simulations are introduced. Additionally, a probability of particle displacements, not restricted to a specific agglomeration regime, is introduced. All the modifications are validated by comparison with Langevin dynamics simulations. Finally, the above mentioned modifications considerably improve the accuracy of Monte Carlo methods to predict the dynamics and agglomeration of suspended nanoparticles.
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
1_ASSA2030
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Ano de publicação:
2020
Tipo de documento:
Article