Your browser doesn't support javascript.
loading
Monte Carlo Aggregation Code (MCAC) Part 1: Fundamentals.
Morán, J; Yon, J; Poux, A.
Afiliação
  • Morán J; Normandie Université, INSA Rouen, UNIROUEN, CNRS, CORIA, 76000 Rouen, France.
  • Yon J; Normandie Université, INSA Rouen, UNIROUEN, CNRS, CORIA, 76000 Rouen, France. Electronic address: yon@coria.fr.
  • Poux A; Normandie Université, INSA Rouen, UNIROUEN, CNRS, CORIA, 76000 Rouen, France.
J Colloid Interface Sci ; 569: 184-194, 2020 Jun 01.
Article em En | MEDLINE | ID: mdl-32109672
The application of Monte Carlo methods to simulate the agglomeration of suspended nanoparticles is currently limited to specific agglomeration regimes with reduced accuracy in terms of the particle's physical residence time. The definition of specific particles persistent distance, its corresponding time step and subsequent probabilities for particle displacements may improve the accuracy of this method. To solve these issues, a new persistent distance and its corresponding time step based on Langevin dynamics simulations are introduced. Additionally, a probability of particle displacements, not restricted to a specific agglomeration regime, is introduced. All the modifications are validated by comparison with Langevin dynamics simulations. Finally, the above mentioned modifications considerably improve the accuracy of Monte Carlo methods to predict the dynamics and agglomeration of suspended nanoparticles.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2020 Tipo de documento: Article