In-plane backward and zero group velocity guided modes in rigid and soft strips.
J Acoust Soc Am
; 147(2): 1302, 2020 Feb.
Article
em En
| MEDLINE
| ID: mdl-32113319
Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity VT and the first order symmetrical Lamb mode S0 of phase velocity equal to the plate velocity VP. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities VP and VT. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson's ratio ν≈0.5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324-1335 (2011)].
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Acoust Soc Am
Ano de publicação:
2020
Tipo de documento:
Article