LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis.
Cancer Biomark
; 28(2): 169-180, 2020.
Article
em En
| MEDLINE
| ID: mdl-32176627
BACKGROUND: Glioma is considered to be one of the most common and lethal malignant brain tumors, accounting for 40% to 50% of brain tumors. Long non-coding RNAs (lncRNAs) have been widely proved to play an irreplaceable role in the tumorigenesis and progression. Nevertheless, the role of LINC00467 in glioblastoma remained unclear. AIM: The current study was aimed to explore the functional mechanism of LINC00467 in glioblastoma. METHODS: The expression of LINC00467/miR-339-3p/IP6K2 glioblastoma tissues and cells was evaluated by RT-qPCR. The protein expression of genes (cleaved PARP, PARP, cleaved caspase 3, caspase 3, Bax, Bcl-2 and IP6K2) was measured by western blot assay. Then role of LINC00467 was demonstrated by EdU, colony formation, flow cytometry and TUNEL assays. The relationship between miR-339-3p and LINC00467/IP6K2 was validated by RNA pull down and luciferase reporter assays. RESULTS: The expression of LINC00467 was upregulated in glioblastoma tissues and cells. LINC00467 knockdown suppressed cell proliferation but activated cell apoptosis. Further, LINC00467 high expression was associated with shorter overall survival rate in glioblastoma patients. Further, LINC00467 could bind with miR-339-3p, and IP6K2 was targeted by miR-339-3p. IP6K2 expression was regulated by LINC00467/miR-339-3p in a ceRNA pattern. Moreover, LINC00467 could regulate the development of glioblastoma via miR-339-3p/IP6K2 axis. CONCLUSIONS: LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis, which may enlighten to find a novel therapeutic tactic for glioblastoma patients.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
6_ODS3_enfermedades_notrasmisibles
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Encefálicas
/
Fosfotransferases (Aceptor do Grupo Fosfato)
/
Glioblastoma
/
MicroRNAs
/
RNA Longo não Codificante
Limite:
Humans
Idioma:
En
Revista:
Cancer Biomark
Ano de publicação:
2020
Tipo de documento:
Article