Your browser doesn't support javascript.
loading
Metacommunity Structure of Stream Insects across Three Hierarchical Spatial scales.
He, Siwen; Soininen, Janne; Deng, Guiping; Wang, Beixin.
Afiliação
  • He S; Department of Entomology Nanjing Agricultural University Nanjing China.
  • Soininen J; Department of Geosciences and Geography University of Helsinki Helsinki Finland.
  • Deng G; Department of Geosciences and Geography University of Helsinki Helsinki Finland.
  • Wang B; Jiuzhaigou Administrative Bureau Jiuzhaigou County China.
Ecol Evol ; 10(6): 2874-2884, 2020 Mar.
Article em En | MEDLINE | ID: mdl-32211162
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within-stream scale, intermediate, among-stream scale, and large, among-sub-basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within-stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among-sub-basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among-stream and among-sub-basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Ecol Evol Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Ecol Evol Ano de publicação: 2020 Tipo de documento: Article