Your browser doesn't support javascript.
loading
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems.
Tancogne-Dejean, Nicolas; Oliveira, Micael J T; Andrade, Xavier; Appel, Heiko; Borca, Carlos H; Le Breton, Guillaume; Buchholz, Florian; Castro, Alberto; Corni, Stefano; Correa, Alfredo A; De Giovannini, Umberto; Delgado, Alain; Eich, Florian G; Flick, Johannes; Gil, Gabriel; Gomez, Adrián; Helbig, Nicole; Hübener, Hannes; Jestädt, René; Jornet-Somoza, Joaquim; Larsen, Ask H; Lebedeva, Irina V; Lüders, Martin; Marques, Miguel A L; Ohlmann, Sebastian T; Pipolo, Silvio; Rampp, Markus; Rozzi, Carlo A; Strubbe, David A; Sato, Shunsuke A; Schäfer, Christian; Theophilou, Iris; Welden, Alicia; Rubio, Angel.
Afiliação
  • Tancogne-Dejean N; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Oliveira MJT; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Andrade X; Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Appel H; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Borca CH; Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Le Breton G; Département de Physique, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, France.
  • Buchholz F; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Castro A; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Calle Mariano Esquillor, 50018 Zaragoza, Spain.
  • Corni S; Dipartimento di Scienze Chimiche, Università degli studi di Padova, via F. Marzolo 1, 35131 Padova, Italy.
  • Correa AA; Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • De Giovannini U; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Delgado A; Xanadu, 777 Bay Street, Toronto, Ontario M5G 2C8, Canada.
  • Eich FG; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Flick J; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Gil G; Dipartimento di Scienze Chimiche, Università degli studi di Padova, via F. Marzolo 1, 35131 Padova, Italy.
  • Gomez A; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Calle Mariano Esquillor, 50018 Zaragoza, Spain.
  • Helbig N; Nanomat/Qmat/CESAM and ETSF, Université de Liège, B-4000 Sart-Tilman, Belgium.
  • Hübener H; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Jestädt R; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Jornet-Somoza J; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Larsen AH; Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain.
  • Lebedeva IV; Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain.
  • Lüders M; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Marques MAL; Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany.
  • Ohlmann ST; Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany.
  • Pipolo S; Université de Lille, CNRS, Centrale Lille, ENSCL, Université d' Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
  • Rampp M; Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany.
  • Rozzi CA; CNR - Istituto Nanoscienze, via Campi 213a, 41125 Modena, Italy.
  • Strubbe DA; Department of Physics, School of Natural Sciences, University of California, Merced, California 95343, USA.
  • Sato SA; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Schäfer C; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Theophilou I; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Welden A; Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Rubio A; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
J Chem Phys ; 152(12): 124119, 2020 Mar 31.
Article em En | MEDLINE | ID: mdl-32241132
ABSTRACT
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2020 Tipo de documento: Article