Your browser doesn't support javascript.
loading
MoS2-ZnO nanocomposites as highly functional agents for anti-angiogenic and anti-cancer theranostics.
Chacko, Levna; Poyyakkara, Aswini; Kumar, V B Sameer; Aneesh, P M.
Afiliação
  • Chacko L; Department of Physics, Central University of Kerala, Kasaragod, Kerala 671314, India. aneeshpm@cukerala.ac.in.
J Mater Chem B ; 6(19): 3048-3057, 2018 May 21.
Article em En | MEDLINE | ID: mdl-32254340
ABSTRACT
Due to its excellent properties, 2D-MoS2 finds potential applications in the fields of electronics, optoelectronics, energy storage and conversion, biomedicine, etc. This work deals with the incorporation of ZnO into 2D-MoS2, its structural, morphological, optical, and magnetic studies and its application as an efficient cancer therapeutic agent. The MoS2-ZnO nanocomposite exhibits remarkable excitation wavelength dependent down-conversion and up-conversion photoluminescence. The observation of wasp-waisted magnetism in the MoS2-ZnO nanocomposite indicates the coupling of ZnO and MoS2 materials inducing multimodal population. The MoS2-ZnO nanocomposite showed cytotoxic properties with a safety index reaching up to ∼2. An in ovo xenograft assay revealed that the MoS2-ZnO nanocomposite retards tumor growth by specifically activating caspase-3 and thereby inducing cellular apoptosis. Moreover, the treatment of xenografts with the MoS2-ZnO nanocomposite down regulated the expression of major pro-angiogenic genes such as VEGF, VEGFR2 etc. thereby curtailing vascularization into the tumor intima. Treatment of tumor xenografts with the MoS2-ZnO nanocomposite caused reduced expression of mesenchymal specific genes and elevated expression of epithelial specific genes, implying a role of the MoS2-ZnO nanocomposite in retarding the process of epithelial to mesenchymal transition (EMT). This study highlights that the introduction of ZnO into MoS2 nanostructures offers a unique idea to design efficient MoS2-based multifunctional nanocomposites that provide opportunities in advanced biomedical and optoelectronic applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Mater Chem B Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Mater Chem B Ano de publicação: 2018 Tipo de documento: Article