Your browser doesn't support javascript.
loading
Geology and climate influence rhizobiome composition of the phenotypically diverse tropical tree Tabebuia heterophylla.
Ortiz, Yakshi; Restrepo, Carla; Vilanova-Cuevas, Brayan; Santiago-Valentin, Eugenio; Tringe, Susannah G; Godoy-Vitorino, Filipa.
Afiliação
  • Ortiz Y; Department of Biology, University of Puerto Rico, San Juan, Puerto Rico.
  • Restrepo C; Department of Biology, University of Puerto Rico, San Juan, Puerto Rico.
  • Vilanova-Cuevas B; Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico.
  • Santiago-Valentin E; Department of Biology, University of Puerto Rico, San Juan, Puerto Rico.
  • Tringe SG; Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America.
  • Godoy-Vitorino F; Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico.
PLoS One ; 15(4): e0231083, 2020.
Article em En | MEDLINE | ID: mdl-32255799
ABSTRACT
Plant-associated microbial communities have diverse phenotypic effects on their hosts that are only beginning to be revealed. We hypothesized that morpho-physiological variations in the tropical tree Tabebuia heterophylla, observed on different geological substrates, arise in part due to microbial processes in the rhizosphere. We characterized the microbiota of the rhizosphere and soil communities associated with T. heterophylla trees in high and low altitude sites (with varying temperature and precipitation) of volcanic, karst and serpentine geologies across Puerto Rico. We sampled 6 areas across the island in three geological materials including volcanic, serpentine and karst soils. Collection was done in 2 elevations (>450m and 0-300m high), that included 3 trees for each site and 4 replicate soil samples per tree of both bulk and rhizosphere. Genomic DNA was extracted from 144 samples, and 16S rRNA V4 sequencing was performed on the Illumina MiSeq platform. Proteobacteria, Actinobacteria, and Verrucomicrobia were the most dominant phyla, and microbiomes clustered by geological substrate and elevation. Volcanic samples were enriched in Verrucomicrobia; karst was dominated by nitrogen-fixing Proteobacteria, and serpentine sites harbored the most diverse communities, with dominant Cyanobacteria. Sites with similar climates but differing geologies showed significant differences on rhizobiota diversity and composition demonstrating the importance of geology in shaping the rhizosphere microbiota, with implications for the plant's phenotype. Our study sheds light on the combined role of geology and climate in the rhizosphere microbial consortia, likely contributing to the phenotypic plasticity of the trees.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Raízes de Plantas / Tabebuia / Rizosfera País/Região como assunto: Caribe / Puerto rico Idioma: En Revista: PLoS One Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Raízes de Plantas / Tabebuia / Rizosfera País/Região como assunto: Caribe / Puerto rico Idioma: En Revista: PLoS One Ano de publicação: 2020 Tipo de documento: Article