Your browser doesn't support javascript.
loading
In Situ Li3PO4/PVA Solid Polymer Electrolyte Protective Layer Stabilizes the Lithium Metal Anode.
Hao, Shuaiguo; Ma, Zhipeng; Zhao, Yao; Kong, Lina; He, Haoyan; Shao, Guangjie; Qin, Xiujuan; Gao, Weimin.
Afiliação
  • Hao S; Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Ma Z; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
  • Zhao Y; Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Kong L; Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • He H; Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Shao G; Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Qin X; Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Gao W; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
ACS Omega ; 5(14): 8299-8304, 2020 Apr 14.
Article em En | MEDLINE | ID: mdl-32309741
ABSTRACT
A lithium metal anode is regarded as the most promising anode material for the next generation of high-energy density batteries because of its high specific capacity and low reduction potential. However, dendritic deposition and severe side reactions in continuous Li plating/stripping inevitably hinder the practical application of Li metal batteries. A solid polymer electrolyte protective layer with synergistic Li3PO4/polyvinyl alcohol (PVA) features is in situ constructed on a lithium metal anode to obtain a stable interface during charge/discharge cycles. The protective layer can adapt to volume changes and inhibit lithium dendrites. The in situ reaction guaranteed the uniformity of ion transport and a tight interface between the protective layer and the lithium metal, so that the lithium deposition behavior was effectively regulated. The PP-Li anode presented a stable Li plating/stripping for 1000 h in a symmetrical cell system and exhibited an enhanced performance of the lithium titanium oxide cell. The in situ Li3PO4/PVA solid polymer electrolyte protective layer provided a promising strategy to tackle the challenges raised by the intrinsic properties of the lithium metal anode.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2020 Tipo de documento: Article