Your browser doesn't support javascript.
loading
A Modular Vaccine Platform Combining Self-Assembled Peptide Cages and Immunogenic Peptides.
Morris, Caroline; Glennie, Sarah J; Lam, Hon S; Baum, Holly E; Kandage, Dhinushi; Williams, Neil A; Morgan, David J; Woolfson, Derek N; Davidson, Andrew D.
Afiliação
  • Morris C; BrisSynBio University of Bristol Bristol BS8 1TQ UK.
  • Glennie SJ; School of Chemistry University of Bristol Bristol BS8 1TS UK.
  • Lam HS; School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK.
  • Baum HE; School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK.
  • Kandage D; BrisSynBio University of Bristol Bristol BS8 1TQ UK.
  • Williams NA; School of Chemistry University of Bristol Bristol BS8 1TS UK.
  • Morgan DJ; School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK.
  • Woolfson DN; School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK.
  • Davidson AD; School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK.
Adv Funct Mater ; 29(8): 1807357, 2019 Feb 21.
Article em En | MEDLINE | ID: mdl-32313545
ABSTRACT
Subunit vaccines use delivery platforms to present minimal antigenic components for immunization. The benefits of such systems include multivalency, self-adjuvanting properties, and more specific immune responses. Previously, the design, synthesis, and characterization of self-assembling peptide cages (SAGEs) have been reported. In these, de novo peptides are combined to make hubs that assemble into nanoparticles when mixed in aqueous solution. Here it is shown that SAGEs are nontoxic particles with potential as accessible synthetic peptide scaffolds for the delivery of immunogenic components. To this end, SAGEs functionalized with the model antigenic peptides tetanus toxoid632-651 and ovalbumin323-339 drive antigen-specific responses both in vitro and in vivo, eliciting both CD4+ T cell and B cell responses. Additionally, SAGEs functionalized with the antigenic peptide hemagglutinin518-526 from the influenza virus are also able to drive a CD8+ T cell response in vivo. This work demonstrates the potential of SAGEs to act as a modular scaffold for antigen delivery, capable of inducing and boosting specific and tailored immune responses.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Funct Mater Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Funct Mater Ano de publicação: 2019 Tipo de documento: Article