Your browser doesn't support javascript.
loading
Norway Spruce Balm: Phytochemical Composition and Ability to Enhance Re-epithelialization In Vitro.
Goels, Thomas; Eichenauer, Elisabeth; Langeder, Julia; Hoeller, Franziska; Sykora, Christina; Tahir, Ammar; Urban, Ernst; Heiss, Elke H; Saukel, Johannes; Glasl, Sabine.
Afiliação
  • Goels T; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Eichenauer E; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Langeder J; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Hoeller F; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Sykora C; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Tahir A; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Urban E; Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Heiss EH; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Saukel J; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  • Glasl S; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
Planta Med ; 86(15): 1080-1088, 2020 Oct.
Article em En | MEDLINE | ID: mdl-32316044
ABSTRACT
The balm of the Norway spruce (Picea abies) is a well-known traditional herbal medicine used to cure wounds. Even though clinical trials have confirmed its empirical use, the active constituents, their mode of action, and the exact composition of this natural product are still unknown. In this study, the balm was subjected to fractionated extraction and further purified employing flash chromatography, HPLC-PDA-ELSD, preparative and analytical TLC. Hydroxycinnamic acids ( 1 - 3 ), the lignan pinoresinol ( 4 ), four hydroxylated derivatives of dehydroabietic acid (DHAA) ( 5  -  8 ), and dehydroabietic acid ( 9 ) were isolated. Their structures were elucidated by LC-MS, 1D- and 2D-NMR. Four extracts, two commercially available resin acids-pimaric acid ( 10 ) and isopimaric acid ( 11 )-and the isolated compounds were tested for increased re-epithelialization of cell-free areas in a human adult low calcium high temperature keratinocytes monolayer. Lysophosphatidic acid (10 µM) served as positive control and ranged between 100% and 150% rise in cell-covered area related to the vehicle control. Two extracts containing carboxylic acids and non-acidic apolar constituents, respectively, boosted wound closure by 47% and 36% at 10 and 3 µg/mL, respectively. Pinoresinol, DHAA, three of its hydroxylated derivatives, and pimaric and isopimaric acid as well as defined combinations of the hydroxylated DHAA derivatives led to a significantly enhanced wound closure by up to 90% at concentrations between 1 and 10 µM. Overall, lignans and diterpene resin acids, main constituents of Norway spruce balm, are able to increase migration or proliferation of keratinocytes in vitro. The presented data link the phytochemistry of this natural wound healing agent with boosted re-epithelialization.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Picea País/Região como assunto: Europa Idioma: En Revista: Planta Med Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Picea País/Região como assunto: Europa Idioma: En Revista: Planta Med Ano de publicação: 2020 Tipo de documento: Article