Your browser doesn't support javascript.
loading
Decoding the molecular water structure at complex interfaces through surface-specific spectroscopy of the water bending mode.
Seki, Takakazu; Yu, Chun-Chieh; Yu, Xiaoqing; Ohto, Tatsuhiko; Sun, Shumei; Meister, Konrad; Backus, Ellen H G; Bonn, Mischa; Nagata, Yuki.
Afiliação
  • Seki T; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. bonn@mpip-mainz.mpg.de nagata@mpip-mainz.mpg.de.
Phys Chem Chem Phys ; 22(19): 10934-10940, 2020 May 21.
Article em En | MEDLINE | ID: mdl-32373844
ABSTRACT
The structure of interfacial water determines atmospheric chemistry, wetting properties of materials, and protein folding. The challenge of investigating the properties of specific interfacial water molecules has frequently been confronted using surface-specific sum-frequency generation (SFG) vibrational spectroscopy using the O-H stretch mode. While perfectly suited for the water-air interface, for complex interfaces, a potential complication arises from the contribution of hydroxyl or amine groups of non-water species present at the surface, such as surface hydroxyls on minerals, or O-H and N-H groups contained in proteins. Here, we present a protocol to extract the hydrogen bond strength selectively of interfacial water, through the water bending mode. The bending mode vibrational frequency distribution provides a new avenue for unveiling the hydrogen bonding structure of interfacial water at complex aqueous interfaces. We demonstrate this method for the water-CaF2 and water-protein interfaces. For the former, we show that this method can indeed single out water O-H groups from surface hydroxyls, and that with increasing pH, the hydrogen-bonded network of interfacial water strengthens. Furthermore, we unveil enhanced hydrogen bonding of water, compared to bulk water, at the interface with human serum albumin proteins, a prototypical bio-interface.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água Limite: Humans Idioma: En Revista: Phys Chem Chem Phys Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água Limite: Humans Idioma: En Revista: Phys Chem Chem Phys Ano de publicação: 2020 Tipo de documento: Article