Your browser doesn't support javascript.
loading
Insight into the Mechanism of Reduced IgG/IgE Binding Capacity in Ovalbumin as Induced by Glycation with Monose Epimers through Liquid Chromatography and High-Resolution Mass Spectrometry.
Yang, Yipeng; Liu, Guangxian; Tu, Zongcai; Wang, Hui; Hu, Yueming; Mao, Jihua; Zhang, Jingjing.
Afiliação
  • Yang Y; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
  • Liu G; Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
  • Tu Z; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
  • Wang H; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
  • Hu Y; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
  • Mao J; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
  • Zhang J; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
J Agric Food Chem ; 68(22): 6065-6075, 2020 Jun 03.
Article em En | MEDLINE | ID: mdl-32396375
ABSTRACT
Ovalbumin (OVA) is one of the major food allergens in hen eggs. In this work, it was demonstrated that glycation with d-glucose and its epimers, including d-mannose, d-allose, d-galactose, and l-idose, could effectively attenuate the IgG/IgE binding of OVA, which was attributed to the covalent masking by sugars and to its structural changes. The glycation sites were determined, and their average degree of substitution was found using liquid chromatography coupled with high-resolution mass spectrometry. Fluctuations in OVA conformation were monitored by conventional spectrometry. Compared to those of OVA-Man and OVA-Glu, OVA-All, OVA-Gal, and OVA-Ido showed a higher glycation extent, and the alterations on their steric layouts were more drastic, suggesting that the configuration of hydroxyl groups at positions C-3, C-4, and C-5 in sugars might be important for the glycation reactivity; as such, their capabilities in binding with IgG/IgE decreased more significantly. Attempts were made to provide valuable information for in-depth understanding of the differences in biochemical functionality among epimeric sugars. These insights would be helpful for designing sweetened food products with a desirable level of safety.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imunoglobulina E / Imunoglobulina G / Ovalbumina / Hipersensibilidade a Ovo Limite: Animals / Humans Idioma: En Revista: J Agric Food Chem Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imunoglobulina E / Imunoglobulina G / Ovalbumina / Hipersensibilidade a Ovo Limite: Animals / Humans Idioma: En Revista: J Agric Food Chem Ano de publicação: 2020 Tipo de documento: Article