Your browser doesn't support javascript.
loading
Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment.
Blanc-Durand, P; Schiratti, J-B; Schutte, K; Jehanno, P; Herent, P; Pigneur, F; Lucidarme, O; Benaceur, Y; Sadate, A; Luciani, A; Ernst, O; Rouchaud, A; Creze, M; Dallongeville, A; Banaste, N; Cadi, M; Bousaid, I; Lassau, N; Jegou, S.
Afiliação
  • Blanc-Durand P; Department of Nuclear Medicine, CHU Henri Mondor, AP-HP, 94010 Créteil, France; INSERM IMRB, Team 8, U-PEC, 94000 Créteil, France; INRIA Epione Team, 06410 Sophia Antipolis, France; Owkin, 75013 Paris, France. Electronic address: paul.blancdurand@aphp.fr.
  • Schiratti JB; Owkin, 75013 Paris, France.
  • Schutte K; Owkin, 75013 Paris, France.
  • Jehanno P; Owkin, 75013 Paris, France.
  • Herent P; Owkin, 75013 Paris, France.
  • Pigneur F; Department of Radiology, CHU Henri Mondor, AP-HP, 94010 Créteil, France.
  • Lucidarme O; Department of Radiology, CHU Pitié Salpétrière-Charles Foix, AP-HP, 75013 Paris, France; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédical,75006 Paris, France.
  • Benaceur Y; Department of Radiology, Nimes University Hospital, 30029 Nimes, France.
  • Sadate A; Department of Radiology, Nimes University Hospital, 30029 Nimes, France.
  • Luciani A; Department of Radiology, CHU Henri Mondor, AP-HP, 94010 Créteil, France.
  • Ernst O; Department of Radiology, Centre Hurriez, CHU de Lille, Université de Lille, 59000 Lille, France.
  • Rouchaud A; Department of Radiology, Hospices Civils de Lyon, 69000 Lyon, France.
  • Creze M; Department of Radiology, Hôpitaux Universitaires Paris-Sud, AP-HP, 94270 Le Kremlin Bicêtre, France; BIOMAPS. Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 94805 Villejuif, France.
  • Dallongeville A; Department of Radiology, Hopital Saint Joseph, 75014 Paris, France.
  • Banaste N; Department of Radiology, Centre Léon Bérard, 69000 Lyon, France.
  • Cadi M; Radiologie Paris Ouest, 92200 Neuilly-sur-Seine, France.
  • Bousaid I; Département de la transformation numérique et du système d'information. Gustave-Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France.
  • Lassau N; BIOMAPS. Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 94805 Villejuif, France; Department of Radiology, Gustave-Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France.
  • Jegou S; Owkin, 75013 Paris, France.
Diagn Interv Imaging ; 101(12): 789-794, 2020 Dec.
Article em En | MEDLINE | ID: mdl-32451309
PURPOSE: The purpose of this study was to build and train a deep convolutional neural networks (CNN) algorithm to segment muscular body mass (MBM) to predict muscular surface from a two-dimensional axial computed tomography (CT) slice through L3 vertebra. MATERIALS AND METHODS: An ensemble of 15 deep learning models with a two-dimensional U-net architecture with a 4-level depth and 18 initial filters were trained to segment MBM. The muscular surface values were computed from the predicted masks and corrected with the algorithm's estimated bias. Resulting mask prediction and surface prediction were assessed using Dice similarity coefficient (DSC) and root mean squared error (RMSE) scores respectively using ground truth masks as standards of reference. RESULTS: A total of 1025 individual CT slices were used for training and validation and 500 additional axial CT slices were used for testing. The obtained mean DSC and RMSE on the test set were 0.97 and 3.7 cm2 respectively. CONCLUSION: Deep learning methods using convolutional neural networks algorithm enable a robust and automated extraction of CT derived MBM for sarcopenia assessment, which could be implemented in a clinical workflow.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia Computadorizada por Raios X / Músculos Abdominais / Sarcopenia / Aprendizado Profundo Tipo de estudo: Guideline / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Diagn Interv Imaging Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia Computadorizada por Raios X / Músculos Abdominais / Sarcopenia / Aprendizado Profundo Tipo de estudo: Guideline / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Diagn Interv Imaging Ano de publicação: 2020 Tipo de documento: Article