Your browser doesn't support javascript.
loading
A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding.
Li, Tao; Chiou, Brian; Gilman, Casey K; Luo, Rong; Koshi, Tatsuhiro; Yu, Diankun; Oak, Hayeon C; Giera, Stefanie; Johnson-Venkatesh, Erin; Muthukumar, Allie K; Stevens, Beth; Umemori, Hisashi; Piao, Xianhua.
Afiliação
  • Li T; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
  • Chiou B; Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
  • Gilman CK; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
  • Luo R; Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
  • Koshi T; Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
  • Yu D; Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
  • Oak HC; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
  • Giera S; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
  • Johnson-Venkatesh E; Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
  • Muthukumar AK; F. M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA, USA.
  • Stevens B; F. M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA, USA.
  • Umemori H; F. M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA, USA.
  • Piao X; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
EMBO J ; 39(16): e104136, 2020 08 17.
Article em En | MEDLINE | ID: mdl-32452062
ABSTRACT
Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair. Here, we show that microglial GPR56 maintains appropriate synaptic numbers in several brain regions in a time- and circuit-dependent fashion. Phosphatidylserine (PS) on presynaptic elements binds GPR56 in a domain-specific manner, and microglia-specific deletion of Gpr56 leads to increased synapses as a result of reduced microglial engulfment of PS+ presynaptic inputs. Remarkably, a particular alternatively spliced isoform of GPR56 is selectively required for microglia-mediated synaptic pruning. Our present data provide a ligand- and isoform-specific mechanism underlying microglial GPR56-mediated synapse pruning in the context of complex neurodevelopmental processes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilserinas / Sinapses / Processamento Alternativo / Microglia / Receptores Acoplados a Proteínas G Limite: Animals Idioma: En Revista: EMBO J Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilserinas / Sinapses / Processamento Alternativo / Microglia / Receptores Acoplados a Proteínas G Limite: Animals Idioma: En Revista: EMBO J Ano de publicação: 2020 Tipo de documento: Article