Fabrication of Template-Less Self-Propelled Micromotors Based on A Metal-Sandwiched Polytryptophan Body: An Experimental and DFT Study.
Chempluschem
; 85(6): 1129-1136, 2020 06.
Article
em En
| MEDLINE
| ID: mdl-32485096
The diverse capabilities of self-propelled micro/nanomotors open up significant opportunities for various environmental and biomedical applications. Here, a synchronized two-lobed bubble exhaust drives micromotor comprising a metal (cobalt and gold) sandwiched polytryptophan body (Au/poly-Trp/Co) in a non-curved direction. The autonomous motion is achieved through the decomposition of chemical fuel to result in a kayak-like system. The ejected oxygen bubbles from the interfacial cobalt/polytryptophan layer, as well as the inert nature of the metal segments (Au-Co), were considered for some computational studies of the electronic properties of the composite and physical phenomena at the kayak/electrolyte interfaces, and confirmed the role of Co-Trp in the fuel decomposition. It is believed that the autonomous motion is the combined result of bubble recoil force, self-electrophoresis, and perturbation in the interfacial hydrogen-bond network of the poly-Trp body and water molecules. The velocity of the micromotor in the range 23±4 to 157±17â
µm s-1 at different concentrations of H2 O2 from 1 % to 10 %. Depending on the method of fragmentation, it is possible to have both single and multiple motorized kayaks with lengths of 1.5 and 6â
µm, respectively, that can be tailored for environmental applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chempluschem
Ano de publicação:
2020
Tipo de documento:
Article