Your browser doesn't support javascript.
loading
Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme.
Vagiannis, Dimitrios; Yu, Zhang; Novotna, Eva; Morell, Anselm; Hofman, Jakub.
Afiliação
  • Vagiannis D; Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
  • Yu Z; Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
  • Novotna E; Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
  • Morell A; Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
  • Hofman J; Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic. Electronic address: jakub.hofman@faf.cuni.cz.
Biochem Pharmacol ; 178: 114061, 2020 08.
Article em En | MEDLINE | ID: mdl-32497550
ABSTRACT
Entrectinib is a new tyrosine kinase inhibitor that was recently approved for the treatment of ROS1-positive metastatic non-small cell lung cancer (NSCLC). In this study, we aimed to characterize its potential to act as a modulator of pharmacokinetic cytostatic resistance and perpetrator of drug interactions. In accumulation studies, entrectinib exhibited potent inhibition of ABCB1, while only moderate interaction was recorded for ABCG2 and ABCC1 efflux transporters. Furthermore, incubation assays revealed the potential of this drug to inhibit various recombinant cytochrome P450 enzymes, which can be ranked according to inhibitory affinities as follows CYP2C8 ≈ CYP3A4 > CYP2C9 > CYP2C19 ≈ CYP3A5 > CYP2D6 > CYP2B6 > CYP1A2. Additionally, in silico docking analysis confirmed entrectinib's interactions with ABCB1 and CYP3A4 and resolved their possible molecular background. In subsequent drug combination experiments, we demonstrated the ability of entrectinib to synergize with daunorubicin in various ABCB1-expressing cellular models. Moreover, the comparative proliferation study results suggested that the anticancer efficacy of entrectinib is not affected by the functional presence of tested ABC transporters. In contrast to ABCB1-related data, no resistance reversal effect was recorded for the combination with docetaxel in HepG2-CYP3A4 cells. In the final experimental set, we observed no significant changes in ABCB1, ABCG2, ABCC1 or CYP3A4 gene expression in NSCLC cells exposed to entrectinib. In summary, our work indicates that entrectinib may be a perpetrator of clinically relevant pharmacokinetic drug interactions and modulator of ABCB1-mediated resistance. Our in vitro results might provide a valuable foundation for future clinical investigations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzamidas / Resistencia a Medicamentos Antineoplásicos / Inibidores de Proteínas Quinases / Citocromo P-450 CYP3A / Citostáticos / Indazóis Limite: Animals / Humans Idioma: En Revista: Biochem Pharmacol Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzamidas / Resistencia a Medicamentos Antineoplásicos / Inibidores de Proteínas Quinases / Citocromo P-450 CYP3A / Citostáticos / Indazóis Limite: Animals / Humans Idioma: En Revista: Biochem Pharmacol Ano de publicação: 2020 Tipo de documento: Article