Your browser doesn't support javascript.
loading
Dynamic monitoring and regulation of pentachlorophenol photodegradation process by chemiluminescence and TiO2/PDA.
Chen, Fengjie; Zhao, Lixia; Yu, Wanchao; Wang, Yarui; Zhang, Hui; Guo, Liang-Hong.
Afiliação
  • Chen F; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Zhao L; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China. Electronic address: zlx@rcees.a
  • Yu W; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Wang Y; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Zhang H; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China.
  • Guo LH; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
J Hazard Mater ; 399: 123073, 2020 11 15.
Article em En | MEDLINE | ID: mdl-32534397
ABSTRACT
Pentachlorophenol (PCP), a highly toxic halogenated aromatic compound, and its direct photolysis or TiO2 photocatalysis may generate toxic intermediates and induce secondary pollution in the environment. It is urgently needed to design a strategy to inhibit the toxic intermediates in the photodegradation of PCP. To achieve this, polydopamine (PDA), a non-toxic substance, modified TiO2 (P25/PDA) nanoparticles were synthesized and used to improve the PCP photodegradation process. The dynamic tracking of toxic intermediates tetrachloro-1,4-benzoquinone (TCBQ) and trichlorohydroxy-1,4-benzoquinone (OH-TrCBQ) produced in the PCP photodegradation process were obtained by continuous flow chemiluminescence. Combined with reactive oxygen species (ROS) measurements, P25/PDA could approximatively depress 70 % TCBQ and 40 % OH-TrCBQ generation through the regulation of ROS especially the generation of a fairly large amount of H2O2 (about 30 µM) and O2- (about 20 µM) on the surface of the P25/PDA. The toxicity evaluation showed that the photodegradation of PCP by P25/PDA was a safer and green approach. Therefore, it was instructive to inhibit the formation of highly toxic intermediates in the photodegradation of environmental contaminants by regulating the ROS generated on the surface of the photocatalysts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Ano de publicação: 2020 Tipo de documento: Article