Your browser doesn't support javascript.
loading
Improvement in Detection Limit for Lateral Flow Assay of Biomacromolecules by Test-Zone Pre-enrichment.
Zhang, Yi; Liu, Xiao; Wang, Lingling; Yang, Hanjie; Zhang, Xiaoxiao; Zhu, Chenglong; Wang, Wenlong; Yan, Lijing; Li, Bowei.
Afiliação
  • Zhang Y; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Liu X; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Wang L; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Yang H; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Zhang X; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Zhu C; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Wang W; State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P
  • Yan L; Jiangnan University Hospital, Wuxi, 214122, PR China.
  • Li B; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
Sci Rep ; 10(1): 9604, 2020 06 15.
Article em En | MEDLINE | ID: mdl-32541787
ABSTRACT
Lateral flow assay (LFA) is one of the most prevalent commercially available techniques for point-of-care tests due to its simplicity, celerity, low cost and robust operation. However, conventional colorimetric LFAs have inferior limits of detection (LODs) compared to sophisticated laboratory-based assays. Here, we report a simple strategy of test-zone pre-enrichment to improve the LOD of LFA by loading samples before the conjugate pad assembly. The developed method enables visual LODs of miR-210 mimic and human chorionic gonadotropin protein, to be improved by 10-100 fold compared with a conventional LFA setup without introducing any additional instrument and reagent except for phosphate running buffer, while no obvious difference occurred for Aflatoxin B1 (AFB1). It takes about 6-8 min to enrich every 50 µL of sample diluted with phosphate running buffer, therefore we can get visual results within 20 min. We identified a parameter by modeling the entire process, the concentration of probe-analyte conjugate at test zone when signaling unit being loaded, to be important for the improvement of visual limit of detection. In addition, the test-zone pre-enrichment did not impair the selectivity when miR-210 mimic was adopted as target. Integrated with other optimization, amplification and modification of LFAs, the developed test-zone pre-enrichment method can be applied to further improve LOD of LFAs.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imunoensaio / Substâncias Macromoleculares Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imunoensaio / Substâncias Macromoleculares Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article