Your browser doesn't support javascript.
loading
Fabrication of gold-calcium phosphate composite nanoparticles through coprecipitation mediated by amino-terminated polyethylene glycol.
Nakamura, Maki; Oyane, Ayako; Kuroiwa, Kiyoko; Kosuge, Hisanori.
Afiliação
  • Nakamura M; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. Electronic address: ma-ki-nakamura@aist.go.jp.
  • Oyane A; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Kuroiwa K; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Kosuge H; Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
Colloids Surf B Biointerfaces ; 194: 111169, 2020 Oct.
Article em En | MEDLINE | ID: mdl-32554258
Calcium phosphate (CaP) nanoparticles immobilizing gold (Au) nanocrystals (Au-CaP composite nanoparticles) would be useful in diagnoses and/or treatments with Au nanocrystals. In this study, we achieved the rapid one-pot fabrication of such nanoparticles via coprecipitation in labile supersaturated CaP solutions by using appropriate Au sources, namely, Au nanocrystals coated with amino-terminated polyethylene glycol (PEG). In this process, amino groups at the PEG terminal played a crucial role in the coprecipitation with CaP through affinity interactions, and thus in the formation of Au-CaP composite nanoparticles; however, the molecular weight of the PEG chain was not a controlling factor in the coprecipitation. The important role of the functional groups at the PEG terminal was suggested by comparison with Au nanocrystals coated with carboxyl- and methoxy-terminated PEG, both of which barely coprecipitated with CaP and failed to form Au-CaP composite nanoparticles. Au nanocrystals coated with amino-terminated PEG were immobilized on the CaP nanoparticles, thereby regulating their size (∼140 nm in hydrodynamic diameter) and their dispersion in water. This coprecipitation process and the resulting Au-CaP composite nanoparticles have great potential in biomedical applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Nanopartículas Metálicas Idioma: En Revista: Colloids Surf B Biointerfaces Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Nanopartículas Metálicas Idioma: En Revista: Colloids Surf B Biointerfaces Ano de publicação: 2020 Tipo de documento: Article