Your browser doesn't support javascript.
loading
Runx2 silencing promotes adipogenesis via down-regulation of DLK1 in chondrogenic differentiating MSCs.
Rahim, Fakher; Abbasi Pashaki, Pejman; Jafarisani, Moslem; Ghorbani, Fatemeh; Ebrahimi, Ammar.
Afiliação
  • Rahim F; Thalassemia and Hemoglobinopathy Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
  • Abbasi Pashaki P; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran.
  • Jafarisani M; Department of Biochemistry, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
  • Ghorbani F; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran.
  • Ebrahimi A; Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
J Gene Med ; 22(11): e3244, 2020 11.
Article em En | MEDLINE | ID: mdl-32559818
ABSTRACT

BACKGROUND:

For cartilage regeneration, stem cells are a promising cell source; however, even the advances made in the differentiation of stem cells into precursor-differentiated cartilage cells have not been successful with respect to reprograming these cells to achieve complete differentiation and fully functioning cells until now. Previous findings suggest that Runx2 plays a major role in chondrocyte differentiation and maturation. Although targeting Runx2 has enhanced some chondrocyte properties, the adipogenic lineage shift has eventually occurred in these cells. The present study mainly aimed to reveal the mechanism of this adipogenesis.

METHODS:

To create inducible artificial shRNA-miR expressing vectors, the designed short hairpin RNAs (shRNAs) were inserted into the pri-mir-30 backbone, cloned into lentiviral pLVET-Tet-on, and transducted into mesenchymal stem cells (MSCs). Runx2 gene was silenced in MSCs either for 1 week or 4 weeks and cultured in the chondrogenic medium. At days 7, 14 and 28, cells were harvested, and chondrogenesis, adipogenesis and hypertrophic states were examined using histochemical staining and a real-time polymerase chain reaction assay.

RESULTS:

The results showed that the designed shRNA-miR effectively targeted Runx2 in mRNA and protein levels. Chondrogenic markers were up-regulated in constantly silenced Runx2 group; however, adipogenic markers and fat droplets appeared gradually. DLK1 gene was also significantly down-regulated in this group, and overexpression of DLK1 abrogated adipogenesis in the Runx2 targeted group.

CONCLUSIONS:

Based on these results, it can be concluded that DLK1 is responsible for the lineage shift in Runx2 targeted chondrogenic differentiating MSCs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Ligação ao Cálcio / Diferenciação Celular / Condrócitos / Condrogênese / Subunidade alfa 1 de Fator de Ligação ao Core / Adipogenia / Células-Tronco Mesenquimais / Proteínas de Membrana Limite: Humans Idioma: En Revista: J Gene Med Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Ligação ao Cálcio / Diferenciação Celular / Condrócitos / Condrogênese / Subunidade alfa 1 de Fator de Ligação ao Core / Adipogenia / Células-Tronco Mesenquimais / Proteínas de Membrana Limite: Humans Idioma: En Revista: J Gene Med Ano de publicação: 2020 Tipo de documento: Article