Your browser doesn't support javascript.
loading
Mesoporous ZnAl2Si10O24 nanofertilizers enable high yield of Oryza sativa L.
Naseem, Fizza; Zhi, Yang; Farrukh, Muhammad Akhyar; Hussain, Fayyaz; Yin, Zongyou.
Afiliação
  • Naseem F; Nano-Chemistry Lab, Department of Chemistry, Government College University, Lahore, 54000, Pakistan.
  • Zhi Y; Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
  • Farrukh MA; Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
  • Hussain F; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
  • Yin Z; Nano-Chemistry Lab, Department of Chemistry, Government College University, Lahore, 54000, Pakistan. akhyar100@gmail.com.
Sci Rep ; 10(1): 10841, 2020 07 02.
Article em En | MEDLINE | ID: mdl-32616915
ABSTRACT
Controllable release of nutrients in soil can overcome the environmental problems associated with conventional fertilizer. Here we synthesized mesoporous nanocomposite of Zinc aluminosilicate (ZnAl2Si10O24) via co-precipitation method. Oryza sativa L. husk was used as source of silica for making the synthesis process green and economical. The nanocomposite was subsequently loaded with urea to achieve the demand of simultaneous and slow delivery of both zinc and urea. The structural characterization of nanocomposite was done by FTIR, XRD, TGA, BET, SEM/EDX and TEM. The release of urea and zinc was investigated with UV-Vis spectrophotometry and atomic absorption spectroscopy, respectively, up to 14 days. It was noted that urea holding capacity of mesoporous ZnAl2Si10O24 nanocomposite over long period of time was increased as compared to bulk aluminosilicates, due to its high surface area (193.07 m2 g-1) and small particle size of (64 nm). Urea release was found highest in first 24 h because of excess of adsorption on nanocomposite and least at 14th day. Fertilizer efficiency was checked on Oryza sativa L. in comparison with commercial urea and results showed significantly higher yield in case of urea loaded ZnAl2Si10O24 nanocomposite.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article