Your browser doesn't support javascript.
loading
Study on the ability of 3D gamma analysis and bio-mathematical model in detecting dose changes caused by dose-calculation-grid-size (DCGS).
Bai, Han; Zhu, Sijin; Wu, Xingrao; Liu, Xuhong; Chen, Feihu; Yan, Jiawen.
Afiliação
  • Bai H; Department of Radiation Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou, Road, Xishan District, Kunming, Yunnan, China.
  • Zhu S; Department of Radiation Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou, Road, Xishan District, Kunming, Yunnan, China.
  • Wu X; Department of Radiation Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou, Road, Xishan District, Kunming, Yunnan, China. 916133705@qq.com.
  • Liu X; Department of Radiation Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou, Road, Xishan District, Kunming, Yunnan, China.
  • Chen F; Department of Radiation Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou, Road, Xishan District, Kunming, Yunnan, China.
  • Yan J; Department of Radiation Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou, Road, Xishan District, Kunming, Yunnan, China.
Radiat Oncol ; 15(1): 161, 2020 Jul 06.
Article em En | MEDLINE | ID: mdl-32631380
OBJECTIVE: To explore the efficacy and sensitivity of 3D gamma analysis and bio-mathematical model for cervical cancer in detecting dose changes caused by dose-calculation-grid-size (DCGS). METHODS: 17 patients' plans for cervical cancer were enrolled (Pinnacle TPS, VMAT), and the DCGS was changed from 2.0 mm to 5.0 mm to calculate the planned dose respectively. The dose distribution calculated by DCGS = 2.0 mm as the "reference" data set (RDS), the dose distribution calculated by the rest DCGS as the"measurement"data set (MDS), the 3D gamma passing rates and the (N) TCPs of the all structures under different DCGS were obtained, and then analyze the ability of 3D gamma analysis and (N) TCP model in detecting dose changes and what factors affect this ability. RESULTS: The effect of DCGS on planned dose was obvious. When the gamma standard was 1.0 mm, 1.0 and 10.0%, the difference of the results of the DCGS on dose-effect could be detected by 3D gamma analysis (all p value < 0.05). With the decline of the standard, 3D gamma analysis' ability to detect this difference shows weaker. When the standard was 1.0 mm, 3.0 and 10.0%, the p value of > 0.05 accounted for the majority. With DCGS = 2.0 mm being RDS, ∆gamma-passing-rate presented the same trend with ∆(N) TCPs of all structures except for the femurs only when the 1.0 mm, 1.0 and 10.0% standards were adopted for the 3D gamma analysis. CONCLUSIONS: The 3D gamma analysis and bio-mathematical model can be used to analyze the effect of DCGS on the planned dose. For comparison, the former's detection ability has a lot to do with the designed standard, and the latter's capability is related to the parameters and calculated accuracy instrinsically.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Planejamento da Radioterapia Assistida por Computador / Neoplasias do Colo do Útero / Radioterapia de Intensidade Modulada Tipo de estudo: Observational_studies / Prognostic_studies Limite: Female / Humans Idioma: En Revista: Radiat Oncol Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Planejamento da Radioterapia Assistida por Computador / Neoplasias do Colo do Útero / Radioterapia de Intensidade Modulada Tipo de estudo: Observational_studies / Prognostic_studies Limite: Female / Humans Idioma: En Revista: Radiat Oncol Ano de publicação: 2020 Tipo de documento: Article