Your browser doesn't support javascript.
loading
Cost-effectiveness analysis of multimodal prognostication in cardiac arrest with EEG monitoring.
Amorim, Edilberto; Mo, Shirley S; Palacios, Sebastian; Ghassemi, Mohammad M; Weng, Wei-Hung; Cash, Sydney S; Bianchi, Matthew T; Westover, M Brandon.
Afiliação
  • Amorim E; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Mo SS; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Palacios S; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Ghassemi MM; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Weng WH; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Cash SS; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Bianchi MT; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
  • Westover MB; From Harvard Medical School (E.A., S.S.M., S.S.C., M.T.B., M.B.W.); Department of Neurology (E.A., S.S.C., M.T.B., M.B.W.), Massachusetts General Hospital, Boston; Department of Neurology (E.A.), University of California, San Francisco; and Computer Science and Artificial Intelligence Laboratory (E.
Neurology ; 95(5): e563-e575, 2020 08 04.
Article em En | MEDLINE | ID: mdl-32661097
ABSTRACT

OBJECTIVE:

To determine cost-effectiveness parameters for EEG monitoring in cardiac arrest prognostication.

METHODS:

We conducted a cost-effectiveness analysis to estimate the cost per quality-adjusted life-year (QALY) gained by adding continuous EEG monitoring to standard cardiac arrest prognostication using the American Academy of Neurology Practice Parameter (AANPP) decision algorithm neurologic examination, somatosensory evoked potentials, and neuron-specific enolase. We explored lifetime cost-effectiveness in a closed system that incorporates revenue back into the medical system (return) from payers who survive a cardiac arrest with good outcome and contribute to the health system during the remaining years of life. Good outcome was defined as a Cerebral Performance Category (CPC) score of 1-2 and poor outcome as CPC of 3-5.

RESULTS:

An improvement in specificity for poor outcome prediction of 4.2% would be sufficient to make continuous EEG monitoring cost-effective (baseline AANPP specificity = 83.9%). In sensitivity analysis, the effect of increased sensitivity on the cost-effectiveness of EEG depends on the utility (u) assigned to a poor outcome. For patients who regard surviving with a poor outcome (CPC 3-4) worse than death (u = -0.34), an increased sensitivity for poor outcome prediction of 13.8% would make AANPP + EEG monitoring cost-effective (baseline AANPP sensitivity = 76.3%). In the closed system, an improvement in sensitivity of 1.8% together with an improvement in specificity of 3% was sufficient to make AANPP + EEG monitoring cost-effective, assuming lifetime return of 50% (USD $70,687).

CONCLUSION:

Incorporating continuous EEG monitoring into cardiac arrest prognostication is cost-effective if relatively small improvements in sensitivity and specificity are achieved.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Análise Custo-Benefício / Eletroencefalografia / Monitorização Neurofisiológica / Parada Cardíaca Tipo de estudo: Diagnostic_studies / Etiology_studies / Health_economic_evaluation / Prognostic_studies Aspecto: Patient_preference Limite: Humans Idioma: En Revista: Neurology Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Análise Custo-Benefício / Eletroencefalografia / Monitorização Neurofisiológica / Parada Cardíaca Tipo de estudo: Diagnostic_studies / Etiology_studies / Health_economic_evaluation / Prognostic_studies Aspecto: Patient_preference Limite: Humans Idioma: En Revista: Neurology Ano de publicação: 2020 Tipo de documento: Article