Your browser doesn't support javascript.
loading
Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics.
Jaeger, Elena; Sonnabend, Kristina; Schaarschmidt, Frank; Maintz, David; Weiss, Kilian; Bunck, Alexander C.
Afiliação
  • Jaeger E; Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
  • Sonnabend K; Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany. kristina.sonnabend@uk-koeln.de.
  • Schaarschmidt F; Institute of Cell Biology and Biophysics, Biostatistics Department, Leibniz University Hannover, Hannover, Germany.
  • Maintz D; Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
  • Weiss K; Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
  • Bunck AC; Philips GmbH, Hamburg, Germany.
Fluids Barriers CNS ; 17(1): 43, 2020 Jul 16.
Article em En | MEDLINE | ID: mdl-32677977
ABSTRACT

BACKGROUND:

4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow.

METHODS:

In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed.

RESULTS:

Averaged acquisition times were 1021 min (SENSE), 931 min (CSE4), 625 min (CSE6), 453 min (CSE8) and 351 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 1440 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (< 1 ml/min) in CSE4-8. Results of the accumulated flow error were similar for CSE4 to CSE8.

CONCLUSION:

A quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Líquido Cefalorraquidiano / Neuroimagem / Medula Cervical Limite: Adult / Female / Humans / Male Idioma: En Revista: Fluids Barriers CNS Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Líquido Cefalorraquidiano / Neuroimagem / Medula Cervical Limite: Adult / Female / Humans / Male Idioma: En Revista: Fluids Barriers CNS Ano de publicação: 2020 Tipo de documento: Article