Giga-Gain at Room Temperature in Functionalized Carbon Nanotube Phototransistors Based on a Nonequilibrium Mechanism.
ACS Nano
; 14(8): 10421-10427, 2020 Aug 25.
Article
em En
| MEDLINE
| ID: mdl-32692543
Achieving high gain in a photodetector is critical to detect weak light fields because of the need to amplify the signal. Here, we report the observation of a gain exceeding 109 for a phototransistor composed of an array of aligned semiconducting carbon nanotubes functionalized with a nanoscale layer of poly(3-hexylthiophene-2,5-diyl) (P3HT). In contrast to the expectation based on simple band alignments, the phototransistor operates by transferring holes between the P3HT and the CNT, trapping negative charge near the nanotubes. This mechanism leads to an integrating detector that is shown to detect as little as 490 aW and to resolve as few as 8-13 photons/nanotube at room temperature. A detailed experimental and theoretical investigation of the mechanism shows that the phototransistor is most sensitive when prepared in a nonequilibrium state.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Nano
Ano de publicação:
2020
Tipo de documento:
Article