Your browser doesn't support javascript.
loading
Unraveling peak asymmetry in chromatography through stochastic theory powered Monte Carlo simulations.
Bishop, Logan D C; Misiura, Anastasiia; Moringo, Nicholas A; Landes, Christy F.
Afiliação
  • Bishop LDC; Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA.
  • Misiura A; Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA.
  • Moringo NA; Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA.
  • Landes CF; Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA; Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA; Department of Chemical and Biochemical Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA; Smal
J Chromatogr A ; 1625: 461323, 2020 Aug 16.
Article em En | MEDLINE | ID: mdl-32709353
An overarching theory of chromatography capable of modeling all analyte-stationary phase interactions would enable predictive design of pharmaceutically relevant separations. The stochastic theory of chromatography has been postulated as a suitable basis to achieve this goal. Here, we implement Dondi and Cavazzini's Monte Carlo framework that utilizes experimentally accessible single molecule kinetics and use it to correlate heterogenous adsorption statistics at the stationary phase to shifts in asymmetry. The contributions cannot be captured or modeled through ensemble chemometrics. Simulations reveal that peak asymmetry scales non-linearly with longer analyte-stationary phase interactions and migrates towards symmetry across the column length, even without column overloading.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Método de Monte Carlo / Cromatografia Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: J Chromatogr A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Método de Monte Carlo / Cromatografia Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: J Chromatogr A Ano de publicação: 2020 Tipo de documento: Article