Your browser doesn't support javascript.
loading
Automatic glycemic regulation for the pediatric population based on switched control and time-varying IOB constraints: an in silico study.
Fushimi, Emilia; Serafini, María Cecilia; De Battista, Hernán; Garelli, Fabricio.
Afiliação
  • Fushimi E; Grupo de Control Aplicado (GCA), Instituto LEICI, Facultad de Ingeniería, UNLP-CONICET, 48 y 116 CC, 91 (1900) La Plata, Buenos Aires, Argentina. emilia.fushimi@ing.unlp.edu.ar.
  • Serafini MC; Grupo de Control Aplicado (GCA), Instituto LEICI, Facultad de Ingeniería, UNLP-CONICET, 48 y 116 CC, 91 (1900) La Plata, Buenos Aires, Argentina.
  • De Battista H; Grupo de Control Aplicado (GCA), Instituto LEICI, Facultad de Ingeniería, UNLP-CONICET, 48 y 116 CC, 91 (1900) La Plata, Buenos Aires, Argentina.
  • Garelli F; Grupo de Control Aplicado (GCA), Instituto LEICI, Facultad de Ingeniería, UNLP-CONICET, 48 y 116 CC, 91 (1900) La Plata, Buenos Aires, Argentina.
Med Biol Eng Comput ; 58(10): 2325-2337, 2020 Oct.
Article em En | MEDLINE | ID: mdl-32710375
Artificial pancreas (AP) systems have shown to improve glucose regulation in type 1 diabetes (T1D) patients. However, full closed-loop performance remains a challenge particularly in children and adolescents, since these age groups often present the worst glycemic control. In this work, an algorithm based on switched control and time-varying IOB constraints is presented. The proposed control strategy is evaluated in silico using the FDA-approved UVA/ Padova simulator and its performance contrasted with the previously introduced Automatic Regulation of Glucose (ARG) algorithm in the pediatric population. The effect of unannounced meals is also explored. Results indicate that the proposed strategy achieves lower hypo- and hyperglycemia than the ARG for both announced and unannounced meals. Graphical Abstract Block diagram and illustrative example of insulin and glucose evolution over time for the proposed algorithm (ARGAE).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 2_ODS3 Base de dados: MEDLINE Assunto principal: Algoritmos / Pâncreas Artificial / Insulina Tipo de estudo: Prognostic_studies Limite: Adolescent / Child / Humans Idioma: En Revista: Med Biol Eng Comput Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 2_ODS3 Base de dados: MEDLINE Assunto principal: Algoritmos / Pâncreas Artificial / Insulina Tipo de estudo: Prognostic_studies Limite: Adolescent / Child / Humans Idioma: En Revista: Med Biol Eng Comput Ano de publicação: 2020 Tipo de documento: Article