Your browser doesn't support javascript.
loading
Design of a Practical Underwater Sensor Network for Offshore Fish Farm Cages.
Santana Sosa, Graciela; Santana Abril, Judith; Sosa, Javier; Montiel-Nelson, Juan-Antonio; Bautista, Tomas.
Afiliação
  • Santana Sosa G; Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35015 Las Palmas de Gran Canaria, Spain.
  • Santana Abril J; Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35015 Las Palmas de Gran Canaria, Spain.
  • Sosa J; Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35015 Las Palmas de Gran Canaria, Spain.
  • Montiel-Nelson JA; Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35015 Las Palmas de Gran Canaria, Spain.
  • Bautista T; Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35015 Las Palmas de Gran Canaria, Spain.
Sensors (Basel) ; 20(16)2020 Aug 10.
Article em En | MEDLINE | ID: mdl-32785043
In this paper, we present the design of a practical underwater sensor network for offshore fish farm cages. An overview of the current structure of an offshore fish farm, applied sensor network solutions, and their weaknesses are given. A mixed wireless-wired approach is proposed to mitigate the problem of wire breakage in underwater wired sensor networks. The approach is based on the serial arrangement of identical sections with wired and wireless interconnections areas. Wireless section alleviates underwater maintenance operations when cages are damaged. The analytical model of the proposed solution is studied in terms of maximum power transfer efficiency and the general formulas of the current in their transmitting antennas and sensor nodes are provided. Subsequently, based on simulations, the effects of parasitic resistance across the network are evaluated. A practical underwater sensor network to reach the 30 m depth with sensor nodes distanced 6 m is used to determine the proposal compliance with the ISO 11784/11785 HDX standard in its normal operation. Taking into account the cable breakage scenario, the results from experiments demonstrate the robustness of the proposed approach to keep running the sensor nodes that are located before the short circuit. Sensor node run time is reduced only 4.07% at most using standard values when a cable breakage occurs at the second deepest section.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aquicultura / Tecnologia sem Fio / Pesqueiros Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aquicultura / Tecnologia sem Fio / Pesqueiros Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article