Your browser doesn't support javascript.
loading
Correlating Nanoscale Optical Coherence Length and Microscale Topography in Organic Materials by Coherent Two-Dimensional Microspectroscopy.
Li, Donghai; Titov, Evgenii; Roedel, Maximilian; Kolb, Verena; Goetz, Sebastian; Mitric, Roland; Pflaum, Jens; Brixner, Tobias.
Afiliação
  • Li D; Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Titov E; Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Roedel M; Lehrstuhl für Experimentelle Physik VI, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Kolb V; Lehrstuhl für Experimentelle Physik VI, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Goetz S; Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Mitric R; Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Pflaum J; Lehrstuhl für Experimentelle Physik VI, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Brixner T; Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Magdalene-Schoch-Str. 3, 97074 Würzburg, Germany.
Nano Lett ; 20(9): 6452-6458, 2020 Sep 09.
Article em En | MEDLINE | ID: mdl-32786935
ABSTRACT
Many nanotechnology materials rely on a hierarchical structure ranging from the nanometer scale to the micrometer scale. Their interplay determines the nanoscale optical coherence length, which plays a key role in energy transport and radiative decay and, thus, the optoelectronic applications. However, it is challenging to detect optical coherence length in multiscale structures with existing methods. Techniques such as atomic force microscopy and transmission electron microscopy are not sensitive to optical coherence length. Linear absorption and fluorescence spectroscopy methods, on the other hand, were generally limited by inhomogeneous broadening, which often obstructs the determination of nanoscale coherence length. Here, we carry out coherent two-dimensional microspectroscopy to obtain a map of the local optical coherence length within a hierarchically structured molecular film. Interestingly, the nanoscale coherence length is found to correlate with microscale topography, suggesting a perspective for controlling structural coherence on molecular length scales by appropriate microscopic growth conditions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article