Your browser doesn't support javascript.
loading
Antibacterial tooth surface created by laser-assisted pseudo-biomineralization in a supersaturated solution.
Oyane, Ayako; Sakamaki, Ikuko; Koga, Kenji; Nakamura, Maki; Shitomi, Kanako; Miyaji, Hirofumi.
Afiliação
  • Oyane A; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. Electronic address: a-oyane@aist.go.jp.
  • Sakamaki I; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Koga K; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Nakamura M; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
  • Shitomi K; Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan.
  • Miyaji H; Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan.
Mater Sci Eng C Mater Biol Appl ; 116: 111170, 2020 Nov.
Article em En | MEDLINE | ID: mdl-32806265
A technique for implementing biocompatible and antibacterial functions to a targeted region on tooth surfaces has potential in dental treatments. We have recently demonstrated pseudo-biomineralization, i.e., the growth of an apatite layer on a human dentin substrate by a laser-assisted biomimetic (LAB) process, based on pulsed laser irradiation in a supersaturated CaP solution. In this study, pseudo-biomineralization was induced in the presence of fluoride ions using the LAB process in order to fabricate an antibacterial fluoride-incorporated apatite (FAp) layer on the dentin surface. After processing for 30 min, a micron-thick FAp layer was formed heterogeneously at the laser-irradiated solid-liquid interface via pseudo-biomineralization. A time-course study revealed that the LAB process first eliminated the pre-existing organic layer, while allowing fluoride incorporation into the dentin surface within 1 min. Within 5 min, FAp nanocrystals precipitated on the dentin surface. Within 30 min, these nanocrystals acquired a pillar-like structure that was weakly oriented in the direction normal to the substrate surface to form a dense micron-thick layer. This layer was integrated seamlessly with the underlying dentin without any apparent gaps. The FAp layer exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. The proposed LAB process is expected to be a useful new tool for tooth surface functionalization via facile and area-specific pseudo-biomineralization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomineralização / Lasers / Antibacterianos Limite: Humans Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomineralização / Lasers / Antibacterianos Limite: Humans Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Ano de publicação: 2020 Tipo de documento: Article