Your browser doesn't support javascript.
loading
Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults.
Tal, Yuval; Rubino, Vito; Rosakis, Ares J; Lapusta, Nadia.
Afiliação
  • Tal Y; Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
  • Rubino V; Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
  • Rosakis AJ; Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125.
  • Lapusta N; Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125; arosakis@caltech.edu.
Proc Natl Acad Sci U S A ; 117(35): 21095-21100, 2020 09 01.
Article em En | MEDLINE | ID: mdl-32817539
Large, destructive earthquakes often propagate along thrust faults including megathrusts. The asymmetric interaction of thrust earthquake ruptures with the free surface leads to sudden variations in fault-normal stress, which affect fault friction. Here, we present full-field experimental measurements of displacements, particle velocities, and stresses that characterize the rupture interaction with the free surface, including the large normal stress reductions. We take advantage of these measurements to investigate the dependence of dynamic friction on transient changes in normal stress, demonstrate that the shear frictional resistance exhibits a significant lag in response to such normal stress variations, and identify a predictive frictional formulation that captures this effect. Properly accounting for this delay is important for simulations of fault slip, ground motion, and associated tsunami excitation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article