The frequency gradient of human resting-state brain oscillations follows cortical hierarchies.
Elife
; 92020 08 21.
Article
em En
| MEDLINE
| ID: mdl-32820722
The human cortex is characterized by local morphological features such as cortical thickness, myelin content, and gene expression that change along the posterior-anterior axis. We investigated if some of these structural gradients are associated with a similar gradient in a prominent feature of brain activity - namely the frequency of oscillations. In resting-state MEG recordings from healthy participants (N = 187) using mixed effect models, we found that the dominant peak frequency in a brain area decreases significantly along the posterior-anterior axis following the global hierarchy from early sensory to higher order areas. This spatial gradient of peak frequency was significantly anticorrelated with that of cortical thickness, representing a proxy of the cortical hierarchical level. This result indicates that the dominant frequency changes systematically and globally along the spatial and hierarchical gradients and establishes a new structure-function relationship pertaining to brain oscillations as a core organization that may underlie hierarchical specialization in the brain.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Córtex Cerebral
/
Ondas Encefálicas
Limite:
Adult
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Elife
Ano de publicação:
2020
Tipo de documento:
Article