Your browser doesn't support javascript.
loading
Temporal transcriptome analysis suggest modulation of multiple pathways and gene network involved in cell-cell interaction during early phase of high altitude exposure.
Gaur, Priya; Saini, Supriya; Ray, Koushik; Asanbekovna, Kushubakova Nadira; Akunov, Almaz; Maripov, Abdirashit; Sarybaev, Akpay; Singh, Shashi Bala; Kumar, Bhuvnesh; Vats, Praveen.
Afiliação
  • Gaur P; Defence Institute of Physiology and Allied Sciences, Delhi, India.
  • Saini S; Defence Institute of Physiology and Allied Sciences, Delhi, India.
  • Ray K; Defence Institute of Physiology and Allied Sciences, Delhi, India.
  • Asanbekovna KN; Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan.
  • Akunov A; Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan.
  • Maripov A; Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan.
  • Sarybaev A; Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan.
  • Singh SB; National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India.
  • Kumar B; Defence Institute of Physiology and Allied Sciences, Delhi, India.
  • Vats P; Defence Institute of Physiology and Allied Sciences, Delhi, India.
PLoS One ; 15(9): e0238117, 2020.
Article em En | MEDLINE | ID: mdl-32911517
ABSTRACT
High altitude (HA) conditions induce several physiological and molecular changes, prevalent in individuals who are unexposed to this environment. Individuals exposed towards HA hypoxia yields physiological and molecular orchestration to maintain adequate tissue oxygen delivery and supply at altitude. This study aimed to understand the temporal changes at altitude of 4,111m. Physiological parameters and transcriptome study was conducted at high altitude day 3, 7, 14 and 21. We observed changes in differentially expressed gene (DEG) at high altitude time points along with altered BP, HR, SpO2, mPAP. Physiological changes and unsupervised learning of DEG's discloses high altitude day 3 as distinct time point. Gene enrichment analysis of ontologies and pathways indicate cellular dynamics and immune response involvement in early day exposure and later stable response. Major clustering of genes involved in cellular dynamics deployed into broad categories cell-cell interaction, blood signaling, coagulation system, and cellular process. Our data reveals genes and pathways perturbed for conditions like vascular remodeling, cellular homeostasis. In this study we found the nodal point of the gene interactive network and candidate gene controlling many cellular interactive pathways VIM, CORO1A, CD37, STMN1, RHOC, PDE7B, NELL1, NRP1 and TAGLN and the most significant among them i.e. VIM gene was identified as top hub gene. This study suggests a unique physiological and molecular perturbation likely to play a critical role in high altitude associated pathophysiological condition during early exposure compared to later time points.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comunicação Celular / Perfilação da Expressão Gênica / Redes Reguladoras de Genes / Altitude Tipo de estudo: Prognostic_studies Limite: Adult / Humans / Male Idioma: En Revista: PLoS One Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comunicação Celular / Perfilação da Expressão Gênica / Redes Reguladoras de Genes / Altitude Tipo de estudo: Prognostic_studies Limite: Adult / Humans / Male Idioma: En Revista: PLoS One Ano de publicação: 2020 Tipo de documento: Article