Your browser doesn't support javascript.
loading
Simulation and Fabrication of Nanoscale Spirals Based on Dual-Scale Self-Assemblies.
Lee, Gun Ho; Kim, Shinho; Kim, YongJoo; Jang, Min Seok; Jung, Yeon Sik.
Afiliação
  • Lee GH; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Kim S; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Kim Y; School of Advanced Materials Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea.
  • Jang MS; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Jung YS; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
ACS Appl Mater Interfaces ; 12(41): 46678-46685, 2020 Oct 14.
Article em En | MEDLINE | ID: mdl-32931243
ABSTRACT
Archimedean spirals in nanometer scale have shown remarkable plasmonic responses derived from their linear and rotational asymmetry. Despite the unique optical properties of nanoscale spirals, their applications have been limited due to the difficulty in fabricating large-scale arrays with uniform and systematic control of the morphology. Here, we report simulation results of spiral morphologies, which are used to design a scalable fabrication process for nanoscale spirals and predict their plasmonic responses. First, self-consistent field theory (SCFT) simulations were performed to design optimal templates to guide self-assembly into spiral morphologies. Using the SCFT results, we developed a scalable fabrication process, which is based on the micron-scale assembly of microspheres combined with glancing angle deposition and nanoscale assembly of block copolymers, to induce the formation of uniform nanospirals with diverse size, handedness, orientation, and winding number. Finally, finite-difference time-domain simulation results show linear dichroism and electric field intensity enhancement effects of these nanospirals, which are highly dependent on the winding number of the spirals, indicating the importance of precise control of the structural parameters.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2020 Tipo de documento: Article