Your browser doesn't support javascript.
loading
Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase.
Fujiwara, Yasuhiro; Horisawa-Takada, Yuki; Inoue, Erina; Tani, Naoki; Shibuya, Hiroki; Fujimura, Sayoko; Kariyazono, Ryo; Sakata, Toyonori; Ohta, Kunihiro; Araki, Kimi; Okada, Yuki; Ishiguro, Kei-Ichiro.
Afiliação
  • Fujiwara Y; Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Horisawa-Takada Y; Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan.
  • Inoue E; Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Tani N; Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan.
  • Shibuya H; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Fujimura S; Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan.
  • Kariyazono R; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
  • Sakata T; Laboratory of Genome Structure and Function, the Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo, Japan.
  • Ohta K; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
  • Araki K; Institute of Resource Development and Analysis & Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
  • Okada Y; Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Ishiguro KI; Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan.
PLoS Genet ; 16(9): e1009048, 2020 09.
Article em En | MEDLINE | ID: mdl-32931493
ABSTRACT
During meiotic prophase, sister chromatids are organized into axial element (AE), which underlies the structural framework for the meiotic events such as meiotic recombination and homolog synapsis. HORMA domain-containing proteins (HORMADs) localize along AE and play critical roles in the regulation of those meiotic events. Organization of AE is attributed to two groups of proteins meiotic cohesins REC8 and RAD21L; and AE components SYCP2 and SYCP3. It has been elusive how these chromosome structural proteins contribute to the chromatin loading of HORMADs prior to AE formation. Here we newly generated Sycp2 null mice and showed that initial chromatin loading of HORMAD1 was mediated by meiotic cohesins prior to AE formation. HORMAD1 interacted not only with the AE components SYCP2 and SYCP3 but also with meiotic cohesins. Notably, HORMAD1 interacted with meiotic cohesins even in Sycp2-KO, and localized along cohesin axial cores independently of the AE components SYCP2 and SYCP3. Hormad1/Rad21L-double knockout (dKO) showed more severe defects in the formation of synaptonemal complex (SC) compared to Hormad1-KO or Rad21L-KO. Intriguingly, Hormad1/Rec8-dKO but not Hormad1/Rad21L-dKO showed precocious separation of sister chromatid axis. These findings suggest that meiotic cohesins REC8 and RAD21L mediate chromatin loading and the mode of action of HORMAD1 for synapsis during early meiotic prophase.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Cromossômicas não Histona / Proteínas de Ciclo Celular Limite: Animals Idioma: En Revista: PLoS Genet Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Cromossômicas não Histona / Proteínas de Ciclo Celular Limite: Animals Idioma: En Revista: PLoS Genet Ano de publicação: 2020 Tipo de documento: Article