Your browser doesn't support javascript.
loading
Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity.
Deperrois, Nicolas; Graupner, Michael.
Afiliação
  • Deperrois N; Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France.
  • Graupner M; Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France.
PLoS Comput Biol ; 16(9): e1008265, 2020 09.
Article em En | MEDLINE | ID: mdl-32976516
Synaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Depressão Sináptica de Longo Prazo / Modelos Neurológicos / Plasticidade Neuronal Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: PLoS Comput Biol Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Depressão Sináptica de Longo Prazo / Modelos Neurológicos / Plasticidade Neuronal Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: PLoS Comput Biol Ano de publicação: 2020 Tipo de documento: Article