Your browser doesn't support javascript.
loading
Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data.
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Alispach, C; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Argüelles, C; Auffenberg, J; Axani, S; Backes, P; Bagherpour, H; Bai, X; Balagopal V, A; Barbano, A; Barwick, S W; Bastian, B; Baum, V; Baur, S; Bay, R; Beatty, J J; Becker, K-H; Becker Tjus, J; BenZvi, S; Berley, D; Bernardini, E; Besson, D Z; Binder, G; Bindig, D; Blaufuss, E; Blot, S; Bohm, C; Böser, S; Botner, O; Böttcher, J; Bourbeau, E; Bourbeau, J; Bradascio, F; Braun, J; Bron, S; Brostean-Kaiser, J; Burgman, A; Buscher, J; Busse, R S; Carver, T; Chen, C.
Afiliação
  • Aartsen MG; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Ackermann M; DESY, D-15738 Zeuthen, Germany.
  • Adams J; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Aguilar JA; Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium.
  • Ahlers M; Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
  • Ahrens M; Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden.
  • Alispach C; Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève, Switzerland.
  • Andeen K; Department of Physics, Marquette University, Milwaukee, Wisconsin, 53201, USA.
  • Anderson T; Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Ansseau I; Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium.
  • Anton G; Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
  • Argüelles C; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Auffenberg J; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Axani S; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Backes P; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Bagherpour H; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Bai X; Physics Department, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA.
  • Balagopal V A; Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany.
  • Barbano A; Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève, Switzerland.
  • Barwick SW; Department of Physics and Astronomy, University of California, Irvine, California 92697, USA.
  • Bastian B; DESY, D-15738 Zeuthen, Germany.
  • Baum V; Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Baur S; Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium.
  • Bay R; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Beatty JJ; Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA.
  • Becker KH; Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210, USA.
  • Becker Tjus J; Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany.
  • BenZvi S; Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
  • Berley D; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
  • Bernardini E; Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
  • Besson DZ; DESY, D-15738 Zeuthen, Germany.
  • Binder G; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA.
  • Bindig D; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Blaufuss E; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Blot S; Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany.
  • Bohm C; Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
  • Böser S; DESY, D-15738 Zeuthen, Germany.
  • Botner O; Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden.
  • Böttcher J; Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Bourbeau E; Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden.
  • Bourbeau J; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Bradascio F; Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
  • Braun J; Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA.
  • Bron S; DESY, D-15738 Zeuthen, Germany.
  • Brostean-Kaiser J; Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA.
  • Burgman A; Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève, Switzerland.
  • Buscher J; DESY, D-15738 Zeuthen, Germany.
  • Busse RS; Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden.
  • Carver T; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Chen C; Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
Phys Rev Lett ; 125(12): 121104, 2020 Sep 18.
Article em En | MEDLINE | ID: mdl-33016752
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of ϕ_{astro}=1.66_{-0.27}^{+0.25} at E_{0}=100 TeV, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices γ≤2.28 at ≥3σ significance level. Because of high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below ∼100 TeV compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p value ≥0.06). The sizable and smooth flux measured below ∼100 TeV remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi Large Area Telescope, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma rays.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2020 Tipo de documento: Article